Neutrosophic Data Envelopment Analysis: a Comprehensive Review and Current Trends

Authors

  • Kshitish Kumar Mohanta Department of Mathematics, Indira Gandhi National Tribal University, Amarkantak, 484887, Madhya Pradesh, India
  • Deena Sunil Sharanappa Department of Mathematics, Indira Gandhi National Tribal University, Amarkantak, 484887, Madhya Pradesh, India

DOI:

https://doi.org/10.22105/opt.v1i1

Keywords:

Neutrosophic data envelopment anal, data envelopment analysis, Performance analysis, Efficiency analysis, Neutrosophic number

Abstract

The concept of a neutrosophic set is a comprehensive extension of both fuzzy sets and Intuitionistic Fuzzy Sets (IFSs). It allows decision makers to assign three distinct membership degrees, enabling a more precise representation of uncertainty. Neutrosophic Data Envelopment Analysis (Neu-DEA) is an extended version of the Data Envelopment Analysis (DEA) and Fuzzy DEA (FDEA) concepts. It aims to assess the performance of Decision Making Units (DMUs) within a neutrosophic environment. Neu-DEA specifically tackles the challenges associated with evaluating performance when the input and output data are incomplete, ambiguous, or unsure. As a result, the Neu-DEAs have attracted substantial attention from scholars and academics. This article aims to provide an academic overview of the present state, development patterns, and future research directions of the Neu-DEA research. To do this, the study examines relevant publications using two analytical approaches: description analysis and literature review.

References

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.

https://www.sciencedirect.com/science/article/pii/0377221778901388 [2] Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078–1092.

https://doi.org/10.1287/mnsc.30.9.1078

Cooper, W. W., Park, K. S., & Pastor, J. T. (1999). RAM: a range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. Journal of productivity analysis, 11, 5–42. https://doi.org/10.1023/A:1007701304281

Seiford, L. M., & Thrall, R. M. (1990). Recent developments in DEA: the mathematical programming approach to frontier analysis. Journal of econometrics, 46(1-2), 7-38. https://www.sciencedirect.com/science/article/pii/030440769090045U

Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European journal of operational research, 130(3), 498–509. https://www.sciencedirect.com/science/article/pii/S0377221799004075

Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management science, 39(10), 1261–1264. https://doi.org/10.1287/mnsc.39.10.1261

Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: critique and extensions. New directions for program evaluation, 1986(32), 73–105. https://doi.org/10.1002/ev.1441

Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European journal of operational research, 142(1), 16–20. https://www.sciencedirect.com/science/article/pii/S0377221701002934

Liu, J. S., Lu, L. Y., Lu, W. M., & Lin, B. J. (2013). A survey of DEA applications. Omega, 41(5), 893–902. https://www.sciencedirect.com/science/article/pii/S0305048312002186

Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A., & Khoshnoudi, M. (2017). A comprehensive review

of data envelopment analysis (DEA) approach in energy efficiency. Renewable and sustainable energy reviews, 70, 1298–1322. https:/www.sciencedirect.com/science/article/pii/S1364032116310875

Mohanta, K. K., Sharanappa, D. S., & Aggarwal, A. (2021). Efficiency analysis in the management of COVID-19 pandemic in India based on data envelopment analysis. Current research in behavioral sciences, 2, 100063. https://www.sciencedirect.com/science/article/pii/S2666518221000504

Chaubey, V., Sharanappa, D. S., Mohanta, K. K., Mishra, V. N., & Mishra, L. N. (2022). Efficiency and

productivity analysis of the indian agriculture sector based on the malmquist-DEA. Universal journal of agricultural research, 10(4), 331–343. https://www.researchgate.net/profile/Kshitish-Mohanta/publication/362412506_Efficiency_and_Productivity_Analysis_of_the_Indian_Agriculture_Sector_B

ased_on_the_Malmquist-DEA_Technique/links/62e8e7de9d410c5ff37d5449/Efficiency-and-Productivity-

Analysis-of-t

Kohl, S., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2019). The use of data envelopment analysis (DEA) in

healthcare with a focus on hospitals. Health care management science, 22(2), 245–286. DOI:10.1007/s10729-018-9436-8

Zhu, J. (2003). Imprecise data envelopment analysis (IDEA): a review and improvement with an application. European journal of operational research, 144(3), 513–529. https://www.sciencedirect.com/science/article/pii/S0377221701003927

Emrouznejad, A., & Tavana, M. (2013). Performance measurement with fuzzy data envelopment analysis (Vol. 309). Springer.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://www.sciencedirect.com/science/article/pii/S001999586590241X

Emrouznejad, A., Tavana, M., & Hatami-Marbini, A. (2014). The state of the art in fuzzy data envelopment

analysis. Performance measurement with fuzzy data envelopment analysis, 1-45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41372-8_1

Zhou, W., & Xu, Z. (2020). An overview of the fuzzy data envelopment analysis research and its successful applications. International journal of fuzzy systems, 22(4), 1037–1055. https://doi.org/10.1007/s40815-020-00853-6

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96. https://www.sciencedirect.com/science/article/pii/S0165011486800343

Puri, J., & Yadav, S. P. (2015). Intuitionistic fuzzy data envelopment analysis: an application to the banking sector in India. Expert systems with applications, 42(11), 4982–4998. https://www.sciencedirect.com/science/article/pii/S095741741500113X

Arya, A., & Yadav, S. P. (2019). Development of intuitionistic fuzzy data envelopment analysis models and

intuitionistic fuzzy input–output targets. Soft computing, 23(18), 8975–8993. https://doi.org/10.1007/s00500-018-3504-3

Shakouri, B., Abbasi Shureshjani, R., Daneshian, B., & Hosseinzadeh Lotfi, F. (2020). A parametric method for

ranking intuitionistic fuzzy numbers and its application to solve intuitionistic fuzzy network data envelopment analysis models. Complexity, 2020, 1-25. https://doi.org/10.1155/2020/6408613

Mohanta, K. K., & Sharanappa, D. S. (2023). A novel technique for solving intuitionistic fuzzy DEA model: an application in indian agriculture sector. https://doi.org/10.21203/rs.3.rs-2462648/v2

Edalatpanah, S. A. (2019). A data envelopment analysis model with triangular intuitionistic fuzzy numbers. International journal of data envelopment analysis, 7(4), 47–58. https://ijdea.srbiau.ac.ir/article_15366.html

Akram, M., Shah, S. M. U., Al-Shamiri, M. M. A., & Edalatpanah, S. A. (2023). Extended DEA method for

solving multi-objective transportation problem with Fermatean fuzzy sets. Aims math, 8, 924–961. https://www.aimspress.com/aimspress-data/math/2023/1/PDF/math-08-01-045.pdf

Mohanta, K. K., Sharanappa, D. S., Dabke, D., Mishra, L. N., & Mishra, V. N. (2022). Data envelopment analysis

on the context of spherical fuzzy inputs and outputs. European journal of pure and applied mathematics, 15(3), 1158–1179. https://www.ejpam.com/index.php/ejpam/article/view/4391

Mohanta, K. K., & Sharanappa, D. S. (2022). The spherical fuzzy data envelopment analysis (SF-DEA): a novel

approach for efficiency analysis. AIJR abstracts, 52. https://books.aijr.org/index.php/press/catalog/book/138/chapter/2085

Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-141). American Research Press. https://core.ac.uk/download/pdf/84931.pdf

Edalatpanah, S. A. (2018). Neutrosophic perspective on DEA. Journal of applied research on industrial engineering, 5(4), 339–345. https://doi.org/10.22105/jarie.2019.196020.1100

Abdelfattah, W. (2019). Data envelopment analysis with neutrosophic inputs and outputs. Expert systems, 36(6), e12453. https://doi.org/10.1111/exsy.12453

Kahraman, C., Otay, İ., Öztayşi, B., & Onar, S. Ç. (2019). An integrated AHP & DEA methodology with

neutrosophic sets. Fuzzy multi-criteria decision-making using neutrosophic sets, 623-645. https://doi.org/10.1007/978-3-030-00045-5_24

Edalatpanah, S. A., & Smarandache, F. (2019). Data envelopment analysis for simplified neutrosophic sets.

Neutrosophic sets and systems, 29. https://digitalrepository.unm.edu/nss_journal/vol29/iss1/17/

Mao, X., Guoxi, Z., Fallah, M., & Edalatpanah, S. A. (2020). A neutrosophic-based approach in data envelopment analysis with undesirable outputs. Mathematical problems in engineering, 2020, 1-8. https://www.hindawi.com/journals/mpe/2020/7626102/

Edalatpanah, S. A. (2020). Data envelopment analysis based on triangular neutrosophic numbers. CAAI transactions on intelligence technology, 5(2), 94–98. https://doi.org/10.1049/trit.2020.0016

Yang, W., Cai, L., Edalatpanah, S. A., & Smarandache, F. (2020). Triangular single valued neutrosophic data

envelopment analysis: application to hospital performance measurement. Symmetry, 12(4), 588. https://www.mdpi.com/2073-8994/12/4/588

Chakraborty, A., Mondal, S. P., Ahmadian, A., Senu, N., Alam, S., & Salahshour, S. (2018). Different forms of triangular neutrosophic numbers, de-neutrosophication techniques, and their applications. Symmetry, 10(8), 327. https://www.mdpi.com/2073-8994/10/8/327

Nabeeh, N. (2020). A hybrid neutrosophic approach of DEMATEL with AR-DEA in technology

selection. Neutrosophic sets and systems, 31, 17-30. https://digitalrepository.unm.edu/nss_journal/vol31/iss1/2/

Öztaş, G. Z., Adalı, E. A., Tuş, A., Öztaş, T., & Özçil, A. (2020). An alternative approach for performance

evaluation: plithogenic sets and DEA. International conference on intelligent and fuzzy systems (pp. 742-749). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-51156-2_86

Tapia, J. F. D. (2021). Evaluating negative emissions technologies using neutrosophic data envelopment

analysis. Journal of ceaner production, 286, 125494. https://www.sciencedirect.com/science/article/pii/S0959652620355402

Abdelfattah, W. (2021). Neutrosophic data envelopment analysis: an application to regional hospitals in

Tunisia. Neutrosophic sets and systems, 41, 89-105. https://fs.unm.edu/NSS/NeutrosophicDataEnvelopmentAnalysis6.pdf

Monazzam, N., Alinezhad, A., & Malek, H. (2021). Online simulation optimization using neutrosophic cross-

efficiency DEA and box–behnken experimental design (a case study on the automotive paint shop). International journal of information technology & decision making, 20(6), 1657–1684. https://doi.org/10.1142/S0219622021500462

Jaberi Hafshjani, M., Najafi, S. E., Hosseinzadeh Lotfi, F., & Hajimolana, S. M. (2021). A hybrid BSC-DEA model

with indeterminate information. Journal of mathematics, 2021, 1-14. DOI:10.1155/2021/8867135 https://www.hindawi.com/journals/jmath2021/8867135/

Tapia, J. F. D., Ortenero, J. R., & Tan, R. R. (2022). Selection of energy storage technologies under neutrosophic decision environment. Cleaner engineering and technology, 11, 100576. https://www.sciencedirect.com/science/article/pii/S2666790822001811

Mohanta, K. K., & Toragay, O. (2023). Enhanced performance evaluation through neutrosophic data

envelopment analysis leveraging pentagonal neutrosophic numbers. Journal of operational and strategic analytics, 1(2), 70–80. https://www.researchgate.net/profile/Kshitish-Mohanta/publication/371982852_Enhanced_Performance_Evaluation_Through_Neutrosophic_Data_Envelop

ment_Analysis_Leveraging_Pentagonal_Neutrosophic_Numbers/links/64a4d4f3c41fb852dd4de796/Enhanced-Performance-Evalu

Mohanta, K. K., & Sharanappa, D. S. (2023). A novel method for solving neutrosophic data envelopment

analysis models based on single-valued trapezoidal neutrosophic numbers. Soft computing, 27(22), 17103–17119. https://doi.org/10.1007 s00500-023-08872-9

Mohanta, K. K., Sharanappa, D. S., & Aggarwal, A. (2023). A novel modified Khatter’s approach for solving

neutrosophic data envelopment analysis. Croatian operational research review, 14(1), 15–28. https://hrcak.srce.hr/ojs/index.php/crorr/article/view/22530

Mohanta, K. K., Sharanappa, D. S., & Mishra, V. N. (2023). Neutrosophic data envelopment analysis based on

the possibilistic mean approach. Operations research and decisions, 33(2), 81–98. https://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-b30c97c3-5022-46b0-b971-ffac67d06aeb

Mohanta, K. K., Sharanappa, D. S., & Aggarwal, A. (2023). Value and ambiguity Index-based ranking approach

for solving neutrosophic data envelopment analysis. Neutrosophic sets and systems, 57(1), 25. https://digitalrepository.unm.edu/cgi/viewcontent.cgi article=2370&context=nss_journal

Mohanta, K. K., & Sharanappa, D. S. (2023). Development of the neutrosophic two-stage network data

envelopment analysis to measure the performance of the insurance industry. Soft computing. https://doi.org/10.1007/s00500-023-09294-3

Li, J., Alburaikan, A., & de Fátima Muniz, R. (2023). Evaluation of safety-based performance in construction

projects with neutrosophic data envelopment analysis. Management decision, 61(2), 552–568. https://doi.org/10.1108/MD-02-2022-0237

Rasinojehdehi, R., & Valami, H. B. (2023). A comprehensive neutrosophic model for evaluating the efficiency of airlines based on SBM model of network DEA. Decision making: applications in management and engineering, 6(2), 880–906. https://dmame-journal.org/index.php/dmame/article/view/729

Published

2024-01-07

How to Cite

Neutrosophic Data Envelopment Analysis: a Comprehensive Review and Current Trends. (2024). Optimality, 1(1), 10-22. https://doi.org/10.22105/opt.v1i1