Temperature and pH Influence on Citric Acid Production from Orange Peels Using Aspergillus niger

Authors

DOI:

https://doi.org/10.22105/opt.v1i1

Keywords:

Citric acid‎, Aspergillus niger, Fermentation‎, Orange peel, Degree of substitution

Abstract

Orange peels are undoubtedly abundant in nature, given the large volume of fruit juice produced daily across the globe from oranges coupled with ripe oranges consumed seasonally. Apart from juice industries, where they are obtained in cleaned form as raw materials for several products, including pectin and citric acid (CA), the alternative source is the uncleaned, often dry orange peels dumped in the surrounding environment. Arresting the environmental challenge posed by orange peels prompts its utilization in the grinded form to ferment and produce CA at different pH and temperature using 0.5 mL conidial suspension of Aspergillus niger in this study. At 5 days incubation period, Desing Expert 70.0 estimated 73.3% CA optimum yield at pH = 3 and optimal temperature of 70  and whose degree of substitution (DS) and reaction efficiency (RE) of 1.77 and 7.2%, respectively, implied that more citrate groups have been attached to each starch molecule. For increased emulsification, stability, and solubility, the CA produced at the highest DS and RE should be chosen to manufacture other products. Orange peel ripeness, moisture, micro or macro-nutrient contents, inoculum type, extraction method, and fermentation time (in the case of kinetic study) are influential factors to study during CA synthesis critically. Design of the solid-state fermentation technique used in this study at a laboratory scale is thus recommended.

References

‎[1] ‎ Show, P. L., Oladele, K. O., Siew, Q. Y., Zakry, F. A.-A., Lan, J. C.-W., & Ling, T. C. (2015). Overview of ‎citric acid production from Aspergillus niger. Frontiers in life science, 8(3), 271–283. DOI: ‎‎10.1080/21553769.2015.1033653‎

‎[2] ‎ Bakhiet, S. E. A., & Al-Mokhtar, E. A. I. (2015). Production of citric acid by Aspergillus niger using ‎sugarcane molasses as substrate. Jordan journal of biological sciences (jjbs), 8(3), 211–215.‎

‎[3] ‎ Odu, N. N., Uzah, G. A., & Akani, N. P. (2020). Optimization of citric acid production by Aspergillus niger ‎and Candida tropicalis for solid state fermentation using banana peel substrate. Journal of life and bio-‎sciences research (jlbsr), 1(2), 51–60. DOI: 10.38094/jlbsr1214‎

‎[4] ‎ Lafontaine, A., Sanselme, M., Cartigny, Y., Cardinael, P., & Coquerel, G. (2013). Characterization of the ‎transition between the monohydrate and the anhydrous citric acid. Journal of thermal analysis and ‎calorimetry, 112(1), 307–315. DOI: 10.1007/s10973-012-2798-0‎

‎[5] ‎ Todorovsky, D. S., Dumanova, D. G., Todorovska, R. V, & Getsova, M. M. (2002). Preparation and ‎characterization of yttrium-iron citric acid complexes. Croatica chemica acta (cca), 75(1), 155–164.‎

‎[6] ‎ Ramesh, T., & Kalaiselvam, M. (2011). An experimental study on citric acid production by Aspergillus ‎niger using Gelidiella acerosa as a substrate. Indian journal of microbiology, 51(3), 289–293. DOI: ‎‎10.1007/s12088-011-0066-9‎

‎[7] ‎ Fernandes, F. A., Heleno, S. A., Carocho, M., Pinela, J., Prieto Lage, M. A., Ferreira, I. C. F. R., & Barros, ‎L. (2021). Recovering citric acid from orange juice production residues [presentation]. 5th international ‎symposium on phytochemicals in medicine and food [5-ispmf august 25-september 01 2021, nanchang, ‎china] (pp. 423–426).‎

‎[8] ‎ Weikle, K. (2012). Determination of citric acid in fruit juices using HPLC. Concordia college journal of ‎analytical chemistry, 3, 57–62.‎

‎[9] ‎ West, T. P. (2023). Citric acid production by Aspergillus niger using solid-state fermentation of ‎agricultural processing coproducts. Applied biosciences, 2, 1–13. DOI: 10.3390/ applbiosci2010001‎

‎[10] Egbe, N. E., Ihediwa, L., Abdulsalami, M. S., Adebayo, A., & Onuh, K. (2022). Citric acid production ‎from agricultural wastes using Aspergillus niger isolated from some locations within Kaduna ‎metropolis, Nigeria. Journal of applied science and environmental management (jasem), 26(9), 1607–1614. DOI: ‎‎10.4314/jasem.v26i9.22‎

‎[11] Ye, J., Luo, S., Huang, A., Chen, J., Liu, C., & Mcclements, D. J. (2019). Synthesis and characterization of ‎citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch, (413), ‎‎1–37.‎

‎[12] Amenaghawon, A., Ebewele, E., Osakue, I., & Obaseki, R. (2017). Optimisation of media components ‎using central composite design for increased citric acid production from yam peels using Aspergillus ‎niger. FUOYE journal of engineering and technology, 2(2), 37-. DOI: 10.46792/fuoyejet.v2i2.124‎

‎[13] Vandenberghe, L. P. S., Soccol, C. R., Pandey, A., & Lebeault, J.-M. (1999). Microbial production of citric ‎acid.‎

‎[14] Mikelashvili, V., Kekutia, S., Saneblidze, L., Maisuradze, N., Kriechbaum, M., & Almásy, L. (2023). ‎Synthesis and characterization of citric acid-modified iron oxide nanoparticles prepared with ‎electrohydraulic discharge treatment. Materials, 16(746), 1–12. DOI: 10.3390/ ma16020746‎

‎[15] Ajaelu, C. J., Dawodu, M. O., Faboro, E. O., & Ayanda, O. S. (2017). Copper biosorption by untreated ‎and citric acid modified Senna alata leaf biomass in a batch system: Kinetics, equilibrium and ‎thermodynamics studies. Physical chemistry, 7(2), 31–41. DOI: 10.5923/j.pc.20170702.02‎

‎[16] Behera, B. C., Mishra, R., & Mohapatra, S. (2021). Microbial citric acid: Production, properties, ‎application, and future perspectives. Food frontiers, 2, 62–76. DOI: 10.1002/fft2.66‎

‎[17] Auta, H. S., Abidoye, K. T., Tahir, H., Ibrahim, A. D., & Aransiola, S. A. (2014). Citric acid production by ‎Aspergillus niger cultivated on Parkia biglobosa fruit pulp. International scholarly research notices, ‎‎2014(762021), 1–9. DOI: 10.1155/2014/762021‎

‎[18] Uzah, G. A., Akani, N. P., & Odu, N. N. (2020). Screening of Aspergillus and Candida species with ‎utmost potential to synthesize citric acid. Journal of advances in microbiology, 20(4), 10–18. DOI: ‎‎10.9734/JAMB/2020/v20i430232‎

‎[19] Hang, Y. D., & Woodams, E. E. (1998). Production of citric acid from corncobs by Aspergillus niger. ‎Bioresource technology, 65(3), 251–253. DOI: 10.1016/S0960-8524(98)00015-7‎

‎[20] Ali, S., Ikram-ul-Haq, Qadeer, M. A., & Iqbal, J. (2002). Production of citric acid by Aspergillus niger ‎using cane molasses in a stirred fermentor. Electronic journal of biotechnology, 5(3), 258–271.‎

‎[21] Massadeh, M. I., Fandi, K., Al-Abeid, H., Alsharafat, O., & Abu-Elteen, K. (2022). Production of citric acid ‎by Aspergillus niger cultivated in olive mill wastewater using a two-stage packed column bioreactor. , 8 ‎Fermentation (Vol. 8). Multidisciplinary Digital Publishing Institute (MDPI).‎

‎[22] Chukwuemeka, I. C., Ethel, O. C., Kalu, A. D., & Chigozie, N. C. (2019). Citric acid production by ‎Aspergillus niger using banana and plantain peels. GSC biological and pharmaceutical sciences, 8(2), 15–21. ‎DOI: 10.30574/gscbps.2019.8.2.0111‎

‎[23] Al-Shoaily, K., Al-Amri, M., Al-Rawahi, F., & Al-Sidrani, M. (2014). Multivariate study and analysis of ‎the production of citric acid from dates by surface method. Journal of agricultural chemistry and ‎environment, 3, 20–25. DOI: 10.4236/jacen.2014.32B004‎

‎[24] Alhadithy, D. A., & Yasin, S. R. (2023). Product concentration, yield percentage and productivity of citric ‎acid formation using Aspergillus niger isolated from palm dates. Journal of ecological engineering (jee), ‎‎24(11), 1–13. DOI: 10.12911/22998993/169380‎

‎[25] Maharani, V., Reeta, D., Sundaramanickam, A., Vijayalakshmi, S., & Balasubramanian, T. (2014). ‎Isolation and characterization of citric acid producing Aspergillus niger from spoiled coconut. ‎International journal of current microbiology and applied sciences (ijcmas), 3(3), 700–705.‎

‎[26] Hamdy, H. S. (2013). Citric acid production by Aspergillus niger grown on orange peel medium fortified ‎with cane molasses. Ann microbiology, 63, 267–278. DOI: 10.1007/s13213-012-0470-3‎

‎[27] de Medeiros, A. D. M., & de Medeiros, T. P. M. (2022). Citric acid production by Aspergillus spp. ‎through submerged fermentation using different production mediums containing agroindustrial ‎residues. Research, society and development, 11(6), 1–11. DOI: 10.33448/rsd-v11i6.28839‎

‎[28] Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2015). Characterization of citric acid induced ‎transformation of short-range-order minerals in alfisol, inceptisol and vertisol of India. European journal ‎of mineralogy, 27, 551–557. DOI: 10.1127/ejm/2015/0027-2446‎

‎[29] Rivas, B., Torrado, A., Torre, P., Converti, A., & Dominguez, J. M. (2008). Submerged citric acid ‎fermentation on orange peel autohydrolysate. Journal of agriculture and food chemistry, 56(7), 2380–2387. ‎DOI: 10.1021/jf073388r

‎[30] Emuka, E. (2021). Citric acid production from orange peels using Aspergillus niger. Michael Okpara ‎University Of Agriculture Umudike (MOUAU) Online Repository.‎

‎[31] Aravantinos-Zafiris, G., Tzia, C., Oreopoulou, V., & Thomopoulus, C. D. (1994). Fermentation of orange ‎processing wastes for citric acid production. Journal of the science of food and agriculture, 65(1), 117–120. ‎DOI: 10.1002/jsfa.2740650117‎

‎[32] Vidya, P., Annapoorani, A. M., & Jalalugeen, H. (2018). Optimization and utilisation of various fruit ‎peel as substrate for citric acid production by Aspergillus niger isolated from orange and carrot. The ‎pharma innovation journal, 7(6), 141–146.‎

‎[33] Fernandes, F. A., Heleno, S. A., Carocho, M., Pinela, J., Prieto, M. A., Ferreira, I. C. F. R., & Barros, L. ‎‎(2020). Optimization of citric acid extraction from citrus peels. 1st international electronic conference on food ‎science and functional foods- session: food safety and sustainable development (Vol. 4, pp. 1–7). MDPI: Basel, ‎Switzerland. DOI: 10.3390/foods_2020-07666‎

‎[34] Fernandes, F. A., Heleno, S. A., Pinela, M., Prieto, M. A., Ferreira, I. C. F. R., & Barros, L. (2022). ‎Recovery of citric acid from citrus peels: Ultrasound-assisted extraction optimized by response surface ‎methodology. Chemosensors, 10(257), 1–11. DOI: 10.3390/chemosensors10070257‎

‎[35] Iralapati, V., & Kummari, S. (2014). Production of citric acid from different fruit peels using Aspergillus ‎niger. International journal of scientific engineering and research (ijser), 3(5), 129–130.‎

‎[36] Khati, I., Parande, S., Jagtap, A., & Bhosale, P. (2019). Citric acid production from different organic ‎wastes by using Aspergillus niger. International conference on “empowering society with microbial technology” ‎‎[icesmt|2019] held at tuljaram chaturchand college of arts, science and commerce, baramati-413 102 (Vol. 9, pp. ‎‎83–90). International Journal of Pharmacy and Biological Sciences (JPBS). DOI: ‎‎10.21276/ijpbs.2019.9.sp2.10‎

‎[37] Dutta, A., Sahoo, S., Mishra, R. R., Pradhan, B., Das, A., & Behera, B. C. (2019). A comparative study of ‎citric acid production from different agro-industrial wastes by Aspergillus niger isolated from mangrove ‎forest soil. Environmental and experimental biology, 17(12), 115–122. DOI: 10.22364/eeb.17.12‎

‎[38] Abbas, N., Safdar, W., Ali, S., Choudhry, S., & Elahi, S. (2016). Citric acid production from Aspergillus ‎niger using mango (Mangifera indica L.) and sweet orange (Citrus sinensis) peels as substrate. ‎International journal of scientific & engineering research (ijser), 7(2), 868–872.‎

‎[39] Torrado, A. M., Cortes, S., Salgado, J. M., Max, B., Rodriguez, N., Bibbins, B. P., … Dominguez, J. M. ‎‎(2011). Citric acid production from orange peel wastes by solid-state fermentation. Brazilian journal of ‎microbiology, 42, 394–409. DOI: 10.1590/S1517-83822011000100049‎

‎[40] Zafar, M., Bano, H. S., & Anwar, Z. (2021). Orange peels valorization for citric acid production through ‎single and co-culture fermentation. Jordan journal of biological sciences (jjbs), 14(2), 261–266. DOI: ‎‎10.54319/jjbs/140209‎

‎[41] Subramaniyan, S., Paramasivam, S., Kannaiyan, M., & Chinnaiyan, U. (2019). Utilization of fruit waste ‎for the production of citrus acid by using Aspergillus niger. Journal of drug delivery and therapeutics (jddt), ‎‎9(4-A), 9–14. DOI: 10.22270/jddt.v9i4-A.3487‎

‎[42] Gimba, A. S. B., Zubairu, A., Abubakar, A. M., Salihu, A., & Nzerem, P. (2022). Extraction of pectin from ‎waste orange peels: Influence of particle size and acid type. Journal of multidisciplinary engineering science ‎and technology (jmest), 9(5), 15337–15340.‎

‎[43] Pérez, J., Gómez, K., & Vega, L. (2022). Optimization and preliminary physicochemical characterization of pectin ‎extraction from watermelon rind (citrullus lanatus) with citric acid. , 2022 International Journal of Food ‎Science (Vol. 2022). Hindawi.‎

Published

2024-09-06

How to Cite

Temperature and pH Influence on Citric Acid Production from Orange Peels Using Aspergillus niger. (2024). Optimality, 1(1), 164-180. https://doi.org/10.22105/opt.v1i1