A New Weighted T − X Perks Distribution: Characterization, Simulation And Applications

Authors

  • Dorathy N. Ugwu * Department of Statistics, Faculty of Physical Sciences, Chukwuma Odumegwu Ojukwu University, Igbariam, Anambra State, Nigeria.
  • Sidney I. Onyeagu Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
  • Chinyere P. Igbokwe Department of Statistics, School of Science & Industrial Technology, Abia State Polytechnic, Aba, Abia State, Nigeria.

https://doi.org/10.22105/opt.v1i1.48

Abstract

In this article, a new distribution is proposed to innovate the Perks distribution by altering its functional form without introducing additional parameter. The proposed distribution is named a new weighted T-X Perks (WT-XP) distribution. For this distribution, expressions for some mathematical properties are derived. The maximum likelihood estimates of the parameters α and β are derived and implemented for complete samples that follow the WT-XP distribution. To illustrate the importance of the proposed distribution over the other well-known distributions, two applications to real data sets are analyzed and the WT-XP distribution appear more attractive based on the Kolmogorov Smirnov statistic p-values and the model performance indicators used.

Keywords:

Functional Form, Moment, Perks Distribution, Quantile Function, Weighted T-X Family

References

  1. [1] Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79–88. Elsevier.

  2. [2] Alkhairy, I., Faqiri, H., Shah, Z., Alsuhabi, H., Yusuf, M., Aldallal, R., Makumi, N., & Riad, F. H. (2022). A New Flexible Logarithmic-X Family of Distributions with Applications to Biological Systems. Complexity, 2022. Hindawi.

  3. [3] Alzaatreh, A., Aljarrah, M. A., Smithson, M., Shahbaz, S. H., Shahbaz, M. Q., Famoye, F., & Lee, C. (2021). Truncated family of distributions with applications to time and cost to start a business. Methodology and Computing in Applied Probability, 23, 5–27. Springer.

  4. [4] Eghwerido, J. T., Efe-Eyefia, E., & Zelibe, S. C. (2021). The transmuted alpha power-G family of distributions. Journal of Statistics and Management Systems, 24(5), 965–1002. Taylor & Francis.

  5. [5] Eghwerido, J. T., Agu, F. I., & Ibidoja, O. J. (2022). The shifted exponential-G family of distributions: Properties and applications. Journal of Statistics and Management Systems, 25(1), 43–75. Taylor & Francis.

  6. [6] Huo, X., Khosa, S. K., Ahmad, Z., Almaspoor, Z., & Aamir, M. (2020). A new lifetime exponential-X family of distributions with applications to reliability data. Mathematical Problems in Engineering, 2020, 1–16. Hindawi Limited.

  7. [7] Hussain, S., Rashid, M. S., Ul Hassan, M., & Ahmed, R. (2022). The Generalized Alpha Exponent Power Family of Distributions: Properties and Applications. Mathematics, 10(9), 1421. MDPI.

  8. [8] Kilai, M., Waititu, G. A., Kibira, W. A., Alshanbari, H. M., & El-Morshedy, M. (2022). A new generalization of Gull Alpha Power Family of distributions with application to modeling COVID-19 mortality rates. Results in Physics, 36, 105339. Elsevier. [9] Klakattawi, H., Alsulami, D., Elaal, M. A., Dey, S., & Baharith, L. (2022). A new generalized family of distributions based on combining Marshal-Olkin transformation with TX family. PloS one, 17(2), e0263673. Public Library of Science San Francisco, CA USA.

  9. [9] Reyad, H., Korkmaz, M. Ç., Afify, A. Z., Hamedani, G. G., & Othman, S. (2021). The Fréchet Topp Leone-G family of distributions: Properties, characterizations and applications. Annals of Data Science, 8, 345–366. Springer.

  10. [10] Shah, Z., Khan, D. M., Khan, Z., Shafiq, M., & Choi, J. G. (2022). A New Modified Exponent Power Alpha Family of Distributions with Applications in Reliability Engineering. Processes, 10(11), 2250. MDPI.

  11. [11] Tung, Y. L., Ahmad, Z., & Mahmoudi, E. (2021). The Arcsine-X Family of Distributions with Applications to Financial Sciences. Comput. Syst. Sci. Eng., 39(3), 351–363.

  12. [12] Zhao, W., Khosa, S. K., Ahmad, Z., Aslam, M., & Afify, A. Z. (2020). Type-I heavy tailed family with applications in medicine, engineering and insurance. PloS One, 15(8), e0237462.

  13. [13] Zichuan, M., Hussain, S., Iftikhar, A., Ilyas, M., Ahmad, Z., Khan, D. M., & Manzoor, S. (2020). A new extended-family of distributions: properties and applications. Computational and Mathematical Methods in Medicine, 2020. Hindawi.

  14. [14] Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B., & Ghosh, I. (2017). The Gompertz-G family of distributions. Journal of Statistical Theory and Practice, 11, 179–207. Springer.

  15. [15] Obulezi, O. J., Nwankwo, B. C., Nwankwo, M. P., Anabike, I. C., Igbokwe, C. P., & Igwebudu, C. N. (2023). Modeling Mortality Rate of COVID-19 Patients in the United Kingdom, Canada, and the Survival Rate of COVID-19 Patients in Spain. Journal of Xidian University, 17(11), 520–538.

  16. [16] Ekemezie, D. F. N., & Obulezi, O. J. (2024). The Fav-Jerry Distribution: Another Member in the Lindley Class with Applications.

  17. [17] Earthline Journal of Mathematical Sciences, 14(4), 793–816.

  18. [18] Oha, F. C., Etaga, H. O., Ibeakuzie, P. O., Anabike, I. C., & Obulezi, O. J. (2024). Power XShanker Distribution: Properties, Estimation, and Applications. Eng OA, 2(1), 01–20.

  19. [19] Nwankwo, B. C., Obiora-Ilouno, H. O., Almulhim, F. A., SidAhmed Mustafa, M., & Obulezi, O. J. (2024). Group acceptance sampling plans for type-I heavy-tailed exponential distribution based on truncated life tests. AIP Advances, 14(3). AIP Publishing.

  20. [20] Etaga, H. O., Onyekwere, C. K., Oramulu, D. O., & Obulezi, O. J. (2023). A New Modification of Rani Distribution with More Flexibility in Application. Sch J Phys Math Stat, 7, 160–176.

  21. [21] Etaga, H. O., Nwankwo, M. P., Oramulu, D. O., Anabike, I. C., & Obulezi, O. J. (2023). The Double XLindley Distribution: Properties and Applications. Sch J Phys Math Stat, 10, 192–202.

  22. [22] Etaga, H. O., Onyekwere, C. K., Lydia, O. I., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023). Estimation of the Xrama distribution parameter under complete and progressive type-II censored schemes. Sch J Phys Math Stat, 10, 203–219.

  23. [23] Chukwuma, P. O., Harrison, E. O., Ibeakuzie, P., Anabike, I. C., & Obulezi, O. J. (2024). A new reduced quantile function for generating families of distributions. Annals of Mathematics and Physics, 7(1), 001–015.

  24. [24] Nwankwo, B. C., Orjiakoh, J. N., Nwankwo, M. P., Chukwu, E. I. M. I., & Obulezi, O. J. (2024). A new distribution for modeling both blood cancer data and median effective dose (ED50) of Artemether-Lumefantrine against P. falciparum. Earthline Journal of Mathematical Sciences, 14(1), 41–62.

  25. [25] Nwankwo, M. P., Nwankwo, B. C., & Obulezi, O. J. (2023). The Exponentiated Power Akash Distribution: Properties, Regression, and Applications to Infant Mortality Rate and COVID-19 Patients’ Life Cycle. Annals of Biostatistics and Biometric Applications, 5(4), 1–12.

  26. [26] Obulezi, O. J., Ujunwa, O. E., Anabike, I. C., & Igbokwe, C. P. (2023). The Exponentiated Power Chris-Jerry Distribution: Properties, Regression, Simulation and Applications to Infant Mortality Rate and Lifetime of COVID-19 Patients. TWIST, 18(4), 328–337.

  27. [27] Etaga, H. O., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023). An improved XShanker distribution with applications to rainfall and vinyl chloride data. Sch J Eng Tech, 9, 212–224.

  28. [28] Onuoha, H. C., Osuji, G. A., Etaga, H. O., & Obulezi, O. J. (2023). The Weibull distribution with estimable shift parameter. Earthline Journal of Mathematical Sciences, 13(1), 183–208.

  29. [29] Oramulu, D. O., Etaga, H. O., Onuorah, A. J., & Obulezi, O. J. (2023). A new member in the Lindley class of distributions with flexible applications. Sch J Phys Math Stat, 7, 148–159.

  30. [30] Etaga, H. O., Celestine, E. C., Onyekwere, C. K., Omeje, I. L., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023). A new modification of Shanker distribution with applications to increasing failure rate data. Earthline Journal of Mathematical Sciences, 13(2), 509–526.

  31. [31] Obulezi, O. J., Anabike, I. C., Okoye, G. C., Igbokwe, C. P., Etaga, H. O., & Onyekwere, C. K. (2023). The Kumaraswamy Chris-Jerry distribution and its applications. Journal of Xidian University, 17(6), 575–591.

  32. [32] Oramulu, D. O., Igbokwe, C. P., Anabike, I. C., Etaga, H. O., & Obulezi, O. J. (2023). Simulation study of the Bayesian and non-Bayesian estimation of a new lifetime distribution parameters with increasing hazard rate. Asian Research Journal of Mathematics, 19(9), 183–211.

  33. [33] Chinedu, E. Q., Chukwudum, Q. C., Alsadat, N., Obulezi, O. J., Almetwally, E. M., & Tolba, A. H. (2023). New lifetime distribution with applications to single acceptance sampling plan and scenarios of increasing hazard rates. Symmetry, 15(10), 1881.

  34. [34] Tolba, A. H., Onyekwere, C. K., El-Saeed, A. R., Alsadat, N., Alohali, H., & Obulezi, O. J. (2023). A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data. Sustainability, 15(17), 12782.

  35. [35] Onyekwere, C. K., Okoro, C. N., Obulezi, O. J., Udofia, E. M., & Anabike, I. C. (2022). Modification of Shanker distribution using quadratic rank transmutation map. Journal of Xidian University, 16(8), 179–198.

  36. [36] Musa, A., Onyeagu, S. I., & Obulezi, O. J. (2023). Exponentiated Power Lindley-Logarithmic distribution and its applications. Asian Research Journal of Mathematics, 19(8), 47–60.

  37. [37] Abuh, M., Onyeagu, S. I., & Obulezi, O. (2023). Comparative Study Based on Simulation of Some Methods of Classical Estimation of the Parameters of Exponentiated Lindley–Logarithmic Distribution. Asian Journal of Probability and Statistics, 22(4), 14–30.

  38. [38] Onyekwere, C. K., & Obulezi, O. J. (2022). Chris-Jerry distribution and its applications. Asian Journal of Probability and Statistics, 20(1), 16–30.

  39. [39] Obi, C. D., Chukwuma, P. O., Igbokwe, C. P., Ibeakuzie, P. O., & Anabike, I. C. (2024). A Novel Extension of Rayleigh Distribution: Characterization, Estimation, Simulations and Applications. Journal of Xidian University, 18(7), 177–188.

  40. [40] Anabike, I. C., Okoro, E. S., Igbokwe, C. P., Ibeakuzie, P. O., & Ekemezie, D. F. (2024). New Extended Rayleigh Distribution: Properties, Estimation, Simulation and Application. Journal of Xidian University, 18(7), 179–207.

  41. [41] Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42(2), 299–302. IEEE.

  42. [42] Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–652. Oxford University Press.

  43. [43] Cordeiro, G. M., Ortega, E. M. M., & da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11(1), 1–27.

  44. [44] Alzaghal, A., Famoye, F., & Lee, C. (2013). Exponentiated TX family of distributions with some applications. International Journal of Statistics and Probability, 2(3), 31. Canadian Center of Science and Education.

  45. [45] Obulezi, O. J., Anabike, I. C., Oyo, O. G., Igbokwe, C. P., & Etaga, H. O. (2023). Marshall-Olkin Chris-Jerry distribution and its applications. International Journal of Innovative Science and Research Technology, 8(5), 522–533.

  46. [46] Alizadeh, M., Cordeiro, G. M., Brito, E. d., & Demétrio, C. G. B. (2015). The beta Marshall-Olkin family of distributions. Journal of Statistical Distributions and Applications, 2, 1–18. Springer.

  47. [47] Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M., & Afify, A. Z. (2019). The Marshall-Olkin alpha power family of distributions with applications. Journal of Computational and Applied Mathematics, 351, 41–53. Elsevier.

  48. [48] Yousof, H. M., Afify, A. Z., Nadarajah, S., Hamedani, G., & Aryal, G. R. (2018). The Marshall-Olkin generalized-G family of distributions with applications. Statistica, 78(3), 273–295.

  49. [49] Chipepa, F., Oluyede, B., & Makubate, B. (2020). The Topp-Leone-Marshall-Olkin-G family of distributions with applications. International Journal of Statistics and Probability, 9(4), 15–32. Canadian Center of Science and Education.

  50. [50] Ahmad, Z. (2020). The Zubair-G family of distributions: properties and applications. Annals of Data Science, 7(2), 195–208. Springer.

  51. [51] Nasiru, S., & Abubakari, A. G. (2022). Marshall-Olkin Zubair-G family of distributions. Pakistan Journal of Statistics and

  52. [52] Operation Research, 195–210. College of Statistical and Actuarial Sciences.

  53. [53] Bantan, R., Hassan, A. S., & Elsehetry, M. (2020). Zubair Lomax distribution: properties and estimation based on ranked set sampling. CMC-Computers, Materials & Continua, 65(3), 2169–2187.

  54. [54] Eghwerido, J. T., Efe-Eyefia, E., & Otakore, O. (2021). Performance Rating of the Zubair Gompertz distribution: properties and applications. Journal of Statistics and Management Systems, 24(8), 1601–1626. Taylor & Francis.

  55. [55] Anabike, I. C., Igbokwe, C. P., Onyekwere, C. K. & Obulezi, O. J. (2023). Inference on the parameters of Zubair-Exponential distribution with application to survival times of Guinea Pigs. Journal of Advances in Mathematics and Computer Science, 38(7), 17–35.

  56. [56] Ahmad, Z., Mahmoudi, E., Dey, S.& Khosa, S. K. (2020). Modeling Vehicle Insurance Loss Data Using a New Member of T-X Family of Distributions. Journal of Statistical Theory and Applications, 19(2), 133–147. Springer.

  57. [57] Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries, 63(1), 12–57. Cambridge University Press.

  58. [58] Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63–79. Springer.

  59. [59] Weisstein, E. W. (2002). Lambert W-function. https://mathworld. wolfram. com/, Wolfram Research, Inc.

  60. [60] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. & Knuth, D. E. (1996.) On the Lambert W function. Advances in Computational mathematics, 5, 329–359. Springer.

  61. [61] Team, R. C. (2020). RA language and environment for statistical computing, R Foundation for Statistical. Computing.

Published

2024-07-29

Issue

Section

Articles

How to Cite

N. Ugwu, D. ., I. Onyeagu, S. ., & P. Igbokwe, C. . (2024). A New Weighted T − X Perks Distribution: Characterization, Simulation And Applications. Optimality, 1(1), 66-81. https://doi.org/10.22105/opt.v1i1.48