Ramanujan Primes and Negative Pell’s Equation
Abstract
The Diophantine equation under consideration to find the non-zero integral solution are of the type x2 = (Rp)y2 − (R1)t which represents a very general type of negative Pell’s equation formed using Ramanujan primes as coefficients. The equation are all formed using the first 10 Ramanujan primes 2,11,17,29,41,47,59,67,71 & 97. Fixing the 1st Ramanujan prime R1 = 2, we seek for solutions of Pell’s equation with coefficients Rp, where Rp denotes the pth Ramanujan prime. MSC Classification Number : 11D09,11D99.
Keywords:
Diophantine equation, Ramanujan prime, Negative pell’s equation, Integral solutions, Brah-magupta lemmaReferences
- [1] Anupreethi,T.,Vinmol.K.Jesudas.,Manju Somanath.,Sangeetha,V.,Kannan,J., Vijaya Shanthi,P. (2025). Cryptographic Application of Elliptic Curve generated through the formation of Diophantine triples using Hex Numbers and Pronic Numbers.Communications on Applied Nonlinear Analysis, 32(9s) (2025), 836-840. https://doi.org/10.52783/cana.v32.4017
- [2] Grytczuk, A., Luka, F., & Wojtwicz, M. (2000). The negative Pell equation and Pythagorean triples. Proceedings-japan academy series a mathematical sciences, 76(6), 91-94. https://www.researchgate.net
- [3] Kannan, J., & Somanath, M. (2023). Fundamental perceptions in contemporary number theory. Nova Science Publishers. https://doi.org/10.52305/RRCF4106
- [4] Gopalan, M. A., Sangeetha, V., & Somanath, M. (2014). Construction of strong and almost strong rational Diophantine quadruples. JP Journal of Algebra, Number Theory and Applications, 35(1), 35-48. https://www.researchgate
- [5] Manju Somanath.,Anupreethi,T., Sangeetha, V. (2022). Lattice points for the quadratic diophantine equation 21(x2+y2)−19xy = 84z2. International journal of innovative research science, engineering and technology (IJIRSET), 11(1), 5542-5549. https://www.ijirset.com/upload/2022/may/165_LATTICE_HARDCERT1.pdf
- [6] Anupreethi, T., Somanath, Manju., & Venugopal, Sangeetha. (2022). Integral solutions of quadratic diophantine equation with two unknowns 11(2 + Ω 2 ) = 2(12 Ω − 1). Research and Reflections on Education, 20(3a), 108-111. https://www.researchgate.net
- [7] Manju Somanath., Sangeetha,V., Anupreethi,T. (2023). Special Dio-triples involving Primes. CRC Press Taylor& Francis Group. https://www.taylorfrancis.com/
- [8] Manju Somanath., Anupreethi,T., Sangeetha,V. (2023). Integral solutions of Quadratic Diophantine EquationM2+ N2−14M + 18N = 130(R2 − 1). International Journal of innovative science and Research Technology, 8(11) (2023), 2486-2488. https://www.ijisrt.com/assets/upload/files/IJISRT23NOV2280.pdf
- [9] Manju Somanath., Sangeetha,V., Anupreethi,T. (2023). Solutions in integers for the exponential Diophantine equation (Pp)ȷ + 3` = λ2. International Journal of Science and Applied Research, 10(12),10-14. https://www.ijsar.in/Admin/pdf/SOLUTIONS-IN-INTEGERS-FOR-THE-EXPONENTIAL-DIOPHANTINE-EQUATION.pdf
- [10] Mollin, R. A., & Srinivasan, A. (2010). A note on the negative Pell equation. International Journal of Algebra, 4(19), 919-922. https://www.m-hikari.com/ija/ija-2010/ija-17-20-2010/mollinIJA17-20-2010.pdf
- [11] Newman, M. (1977). A note on an equation related to the Pell equation. The American Mathematical Monthly, 84(5), 365-366. https://doi.org/10.1080/00029890.1977.11994359
- [12] Ramanujan, S.,A proof of Bertrand’s postulate,Journal of the Indian Mathematical Society.,11 (1919), 181-182.
- [13] Sangeetha, V., Anupreethi, T., & Somanath, M. (2023). Construction of Special dio—triples. Indian Journal Of Science And Technology, 16(39), 3440-3442. https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2023/Issue-39/IJST-2023-1735.pdf
- [14] Sangeetha, V., Anupreethi, T., & Somanath, M. (2024). Cryptographic application of elliptic curve generated through centered hexadecagonal numbers. Indian Journal of Science and Technology, 17(20), 2074-2078. https://doi.org/10.17485/IJST/v17i20.1183
- [15] Sangeetha,V.,Anupreethi,T., Manju Somanath. (2024). Exponential diophantine equation in two variables. Bulletin of calcutta mathemaical society, 116(4), 425-430.
- [16] Sloane, N. J. (2010). The on-line encyclopedia of integer sequences. https://www.academia.edu/download/97072750/187495321.pdf#page=221
- [17] Sierpi´nski, W. (1964). Elementary Theory of Numbers, Polish Scientific Publishers, Warszawa,
- [18] Das, R., Somanath, M., & VA, B. (2024). Solution of negative pell's equation using self primes. Palestine journal of mathematics, 13(4), P1005. https://openurl.ebsco.com
- [19] Kannan, J., Somanath, M., & Raja, K. (2019). On a class of solutions for the hyperbolic diophantine equation. International Journal of Applied Mathematics, 32(3), 443-449. https://diogenes.bg/ijam/contents/2019-32-3/6/6.pdf
- [20] Titu Andreescu, Dorin Andrica, Ion Cucurezeanu. (2010). An introduction to diophantine equations. Springer New York Dordrecht Heidelberg London. https://doi.org/10.1007/978-0-8176-4549-6
