Tripolar Fuzzy Ideals In CV Algebra

Authors

  • Shakila Venkatesan *

https://doi.org/10.22105/opt.v2i1.73

Abstract

 In this work the concept of CV -algebra is introduced and some of its properties like, self-distributiveness,
essence, ideals, fuzzy ideals and tripolar fuzzy ideals are investigated. Homomorphism between CV -
algebras is defined and it is established that images and pre-images of essences are also essence when the
homomorphism is onto.

Keywords:

Self-distributive, Essence, Sub algebra, Homomorphism, Fuzzy ideal, Tripolar set

References

  1. [1] Ahn, S.S. & So, K.S. (2008). On ideals and uppers in BE-algebras. Sci. Math. Japo. Online,351–357.

  2. [2] https://doi.org/10.32219/isms.68.2279

  3. [3] Chinnadurai, V., (2013.) Fuzzy Ideals in Algebraic Structures. LAP LAMBERT Academic Publishing.

  4. [4] https://www.researchgate.net/publication/283661412

  5. [5] Tripolar fuzzy ideals in CV algebra 41[3] Hu, Q.P. & Li, X. (1983). On BCH-algebras. Mathematical Seminar Notes, 11, 313–320.https://www.jams.jp/scm/contents/Vol-

  6. [6] -3/1-3-12.pdf

  7. [7] Iseki, K. and Tanaka, S. (1976). BCK-algebras. Mathematical Seminar Notes, 23, 1–26. https://da.lib.kobeu.ac.jp/da/kernel/E0001282/E0001282.pdf

  8. [8] Jana, C., Senapati, T., Shum, K.P. and Pal, M. (2019). Bipolar fuzzy soft subalgebras & ideals of

  9. [9] BCK/BCI-algebras based on bipolar fuzzy points. Journal of intelligent and Fuzzy systems, 37, 2785–2795.

  10. [10] https://journals.sagepub.com/doi/abs/10.3233/JIFS-18877

  11. [11] Kim, H.S. & Kim, Y.H. (2007).On BE-algebras.Sci. Math. Japo., 1(66), 113–116.https://www.jams.jp/scm/contents/e-2006-

  12. [12] /2006-120.pdf

  13. [13] Kim, K.H. (2010).A Note on BE-lagebras.Scientiae Mathematicae Japonicae Online, 369–

  14. [14] https://www.jams.or.jp/scm/contents/e-2010-4/2010-39.pdf

  15. [15] Lee, K.M. (2000).Bipolar valued fuzzy sets and their basic operations.In Proceedings of the International conference, 307–317.

  16. [16] https://www.scirp.org/reference/referencespapers?referenceid=1850408

  17. [17] Mostafa1, S.M. & Ghanem, R. (2020).Tripolar fuzzy sub implicative ideals of KU-Algebras.MathLAB Journal, 5, 63–

  18. [18] https://www.purkh.com/articles/tripolar-fuzzy-sub-implicative-ideals-of-kualgebras.pdf

  19. [19] Murali Krishna Rao, M. (2018).Tripolar fuzzy interior ideals of Γ- semigroup.Anl. of Fuzzy Math. and Info., 2(15), 199–206.

  20. [20] DOI: 10.30948/afmi.2018.15.2.199

  21. [21] Rosenfeld, A. (1971).Fuzzy groups.J.Math.Anal.Appl., 35, 512–517. https://doi.org/10.1016/0022-247X(71)90199-5

  22. [22] Senapati, T., Bhowmik, M. & Pal, M. (2014).Fuzzy Dot Subalgebras and Fuzzy Dot Ideals of B-algebras. Journal of Uncertain

  23. [23] Systems, 8(1), 22–30.https://www.researchgate.net/publication/279766317

  24. [24] Senapati, T., Jana, C. Pal, M. and Jun, Y.B.(2018).Cubic Intuitionistic q-ideals of BCI-Algebras.Symmetry, 10(12), 752.

  25. [25] https://doi.org/10.3390/sym10120752

  26. [26] Zadeh, L.A. (1965).Fuzzy sets. Inform and Control, 8, 338–353.https://www.dca.fee.unicamp.br/ gomide/courses/CT820/artigos/FuzzySetsZadeh1965.pdf

  27. [27] Zhang, W.R. (1994).Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent

  28. [28] decision analysis.Proceedings of IEEE Conference, 305–309. https://doi.org/10.1109/IJCF.1994.375115

  29. [29] Zhang, W.R. (1998).Bipolar fuzzy sets.Proceedings of Fuzzy-IEEE, 835–840. https://www.researchgate.net/publication/280808335

Published

2025-03-17

Issue

Section

Articles

How to Cite

Venkatesan, S. (2025). Tripolar Fuzzy Ideals In CV Algebra. Optimality, 2(1), 30-42. https://doi.org/10.22105/opt.v2i1.73

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.