A Technical Review on the Conventional Analytical Techniques for Optimal Load Flow Investigation on Distribution Feeder Systems Network

Authors

  • Kelechi Nworah Department of Electrical/Electronic Engineering, University of Port Harcourt, Rivers State, Nigeria.
  • Eyo Sunday Abia Department of Electrical/Electronic Engineering, University of Cross River State, Calabar, Cross River State, Nigeria.
  • Imoh Ime Ekanem * Department of Mechanical Engineering Technology, Akwa Ibom State Polytechnic, Ikot Osurua, Nigeria https://orcid.org/0000-0002-8973-9260

https://doi.org/10.22105/opt.vi.70

Abstract

This technical review provides a comprehensive overview of conventional analytical techniques employed for Optimal Load Flow (OLF) investigation in distribution feeder systems. OLF is crucial for efficient power network operation, especially given the unique challenges of radial or weakly meshed distribution networks, distributed generation (DG), and dynamic load profiles. The review details the methodologies, advantages, and limitations of four key conventional methods: Newton-Raphson, Fast Decoupled Load Flow and Gauss-Seidel. While Newton-Raphson offers accuracy and fast convergence, its computational intensity can be a drawback for large systems. The Fast Decoupled Load Flow provides a quicker alternative with potential accuracy trade-offs. The Gauss-Seidel method is simple but suffers from slow and unreliable convergence. The Backward/Forward Sweep method is highlighted as particularly efficient and robust for radial distribution systems due to its non-matrix inversion approach. The study also investigates critical challenges in distribution OLF, voltage regulation, DG integration, load variability, feeder reconfiguration, and loss minimization. The conclusion emphasizes that while these conventional methods form a foundational basis, future advancements often involve their integration with advanced optimization algorithms and uncertainty management techniques to address the increasing complexities of modern smart grids.

Keywords:

Optimal load flow, Distribution feeder, Conventional analytical techniques, Systems network

References

  1. [1] Okachi, S. E., Ogar, V. N., Bendor, S. A., Nkpeh, E. E., Ijeoma, E. E., Acha, G. O., & Ugochukwu, P. O. Automatic power factor correction of distribution feeder in calabar metropolis ( A case study of federal housing feeder). International research journal of modernization in engineering, technology and science (IRJMETS), 6(4), 8608- 8639. https://doi.org/10.56726/IRJMETS53880

  2. [2] Afolabi, O. A., Ali, W. H., Cofie, P., Fuller, J., Obiomon, P., & Kolawole, E. S. (2015). Analysis of the load flow problem in power system planning studies. Energy and power engineering, 7(10), 509–523. https://www.academia.edu/download/119295093/e5a041d5efa6602003bf1b754aed4ef8ba18.pdf

  3. [3] Kabalci, E. (2017). Reactive power compensation in AC power systems. In Reactive power control in ac power systems: fundamentals and current issues (pp. 275–315). Springer. https://doi.org/10.1007/978-3-319-51118-4_8

  4. [4] Chakraborty, K., & Chakrabarti, A. (2015). Soft computing techniques in voltage security analysis. Springer. https://link.springer.com/book/10.1007/978-81-322-2307-8

  5. [5] Broderick, R. J., Quiroz, J. E., Ellis, A., Reno, M. J., Smith, J., & Dugan, R. (2013). Time series power flow analysis for distribution connected PV generation. https://doi.org/10.2172/1088099

  6. [6] Karimi, M., Mokhlis, H., Naidu, K., Uddin, S., & Bakar, A. H. A. (2016). Photovoltaic penetration issues and impacts in distribution network--A review. Renewable and sustainable energy reviews, 53, 594–605. https://doi.org/10.1016/j.rser.2015.08.042

  7. [7] Resener, M., Haffner, S., Pereira, L. A., & Pardalos, P. M. (2018). Optimization techniques applied to planning of electric power distribution systems: a bibliographic survey. Energy systems, 9(3), 473–509. https://doi.org/10.1007/s12667-018-0276-x%0A%0A

  8. [8] Thakurta, P. G., Belmans, R., & Van Hertem, D. (2015). Risk-based management of overloads caused by power injection uncertainties using power flow controlling devices. IEEE transactions on power systems, 30(6), 3082–3092. https://doi.org/10.1109/TPWRS.2015.2388444

  9. [9] Haider, Z. M., Mehmood, K. K., Khan, S. U., Khan, M. O., Wadood, A., & Rhee, S. B. (2021). Optimal management of a distribution feeder during contingency and overload conditions by harnessing the flexibility of smart loads. IEEE access, 9, 40124–40139. https://doi.org/10.1109/ACCESS.2021.3064895

  10. [10] Bottler, S., & Weindl, C. (2023). State-space load flow calculation of an energy system with sector-coupling technologies. Energies, 16(12), 4803. https://doi.org/10.3390/en16124803

  11. [11] Subedi, S., Rauniyar, M., Ishaq, S., Hansen, T. M., Tonkoski, R., Shirazi, M., … & Cicilio, P. (2021). Review of methods to accelerate electromagnetic transient simulation of power systems. IEEE access, 9, 89714–89731. https://doi.org/10.1109/ACCESS.2021.3090320

  12. [12] Awad, N. H., Ali, M. Z., Mallipeddi, R., & Suganthan, P. N. (2019). An efficient differential evolution algorithm for stochastic OPF based active-reactive power dispatch problem considering renewable generators. Applied soft computing, 76, 445–458. https://doi.org/10.1016/j.asoc.2018.12.025

  13. [13] Monyei, C. G., Adewumi, A. O., Obolo, M. O., & Sajou, B. (2018). Nigeria’s energy poverty: Insights and implications for smart policies and framework towards a smart Nigeria electricity network. Renewable and sustainable energy reviews, 81, 1582–1601. https://uwe-repository.worktribe.com/file/872623/1/RSER.pdf

  14. [14] Nworah, K., Abia, E., & Ekanem, I. (2024). A technical review on the conventional analytical techniques for optimal load flow investigation on distribution feeder systems network. Optimality. https://doi.org/10.22105/opt.vi.70

  15. [15] Ismail, B., Wahab, N. I. A., Othman, M. L., Radzi, M. A. M., Vijyakumar, K. N., & Naain, M. N. M. (2020). A comprehensive review on optimal location and sizing of reactive power compensation using hybrid-based approaches for power loss reduction, voltage stability improvement, voltage profile enhancement and loadability enhancement. IEEE access, 8, 222733–222765. https://doi.org/10.1109/ACCESS.2020.3043297

  16. [16] Papazoglou, G., & Biskas, P. (2023). Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem. Energies, 16(3), 1152. https://doi.org/10.3390/en16031152

  17. [17] Arefin, A. A., Baba, M., Singh, N. S. S., Nor, N. B. M., Sheikh, M. A., Kannan, R., … & Mathur, N. (2022). Review of the techniques of the data analytics and islanding detection of distribution systems using phasor measurement unit data. Electronics, 11(18), 2967. https://doi.org/10.3390/electronics11182967

  18. [18] Kazmi, S. A. A., Shahzad, M. K., Khan, A. Z., & Shin, D. R. (2017). Smart distribution networks: A review of modern distribution concepts from a planning perspective. Energies, 10(4), 501. https://doi.org/10.3390/en10040501

  19. [19] Theo, W. L., Lim, J. S., Ho, W. S., Hashim, H., & Lee, C. T. (2017). Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods. Renewable and sustainable energy reviews, 67, 531–573. https://doi.org/10.1016/j.rser.2016.09.063

  20. [20] Adefarati, T., & Bansal, R. C. (2017). Reliability assessment of distribution system with the integration of renewable distributed generation. Applied energy, 185, 158–171. https://doi.org/10.1016/j.apenergy.2016.10.087

  21. [21] El-Hawary, M. E. (2014). The smart grid—state-of-the-art and future trends. Electric power components and systems, 42(3–4), 239–250. https://www.tandfonline.com/doi/pdf/10.1080/15325008.2013.868558

  22. [22] Krishnan, V., Ho, J., Hobbs, B. F., Liu, A. L., McCalley, J. D., Shahidehpour, M., & Zheng, Q. P. (2016). Co-optimization of electricity transmission and generation resources for planning and policy analysis: review of concepts and modeling approaches. Energy systems, 7(2), 297–332. https://doi.org/10.1007/s12667-015-0158-4%0A%0A

  23. [23] Dashti, R., & Rouhandeh, M. (2023). Power distribution system planning framework (A comprehensive review). Energy strategy reviews, 50, 101256. https://doi.org/10.1016/j.esr.2023.101256

  24. [24] Keane, A., Ochoa, L. F., Borges, C. L. T., Ault, G. W., Alarcon-Rodriguez, A. D., Currie, R. A. F., … Harrison, G. P. (2012). State-of-the-art techniques and challenges ahead for distributed generation planning and optimization. IEEE transactions on power systems, 28(2), 1493–1502. https://doi.org/10.1109/TPWRS.2012.2214406

  25. [25] Islam, R., Rivin, M. A. H., Sultana, S., Asif, M. D. A. B., Mohammad, M., & Rahaman, M. (2025). Machine learning for power system stability and control. Results in engineering, 105355. https://doi.org/10.1016/j.rineng.2025.105355

  26. [26] Viral, R., & Khatod, D. K. (2012). Optimal planning of distributed generation systems in distribution system: A review. Renewable and sustainable energy reviews, 16(7), 5146–5165. https://doi.org/10.1016/j.rser.2012.05.020

  27. [27] Dawn, S., Ramakrishna, A., Ramesh, M., Das, S. S., Rao, K. D., Islam, M. M., & Selim Ustun, T. (2024). Integration of renewable energy in microgrids and smart grids in deregulated power systems: a comparative exploration. Advanced energy and sustainability research, 5(10), 2400088. https://doi.org/10.1002/aesr.202400088

  28. [28] Sendin, A., Peña, I., & Angueira, P. (2014). Strategies for power line communications smart metering network deployment. Energies, 7(4), 2377–2420. https://doi.org/10.3390/en7042377

  29. [29] Yin, S. A., & Lu, C. N. (2009). Distribution feeder scheduling considering variable load profile and outage costs. IEEE transactions on power systems, 24(2), 652–660. https://doi.org/10.1109/TPWRS.2009.2016300

  30. [30] Walling, R. A., Saint, R., Dugan, R. C., Burke, J., & Kojovic, L. A. (2008). Summary of distributed resources impact on power delivery systems. IEEE transactions on power delivery, 23(3), 1636–1644. https://doi.org/10.1109/TPWRD.2007.909115

  31. [31] Dugan, R. C., & McDermott, T. E. (2001). Operating conflicts for distributed generation on distribution systems [presentation]. 2001 rural electric power conference. papers presented at the 45th annual conference (cat. no. 01ch37214) (pp. A3-1). https://doi.org/10.1109/REPCON.2001.949511

  32. [32] Trias, A. (2012). The holomorphic embedding load flow method. 2012 IEEE power and energy society general meeting (pp. 1-8). IEEE. https://doi.org/10.1109/PESGM.2012.6344759

  33. [33] Goswami, G., & Goswami, P. K. (2021). A design analysis and implementation of PI, PID and fuzzy supervised shunt APF at nonlinear load application to improve power quality and system reliability. International journal of system assurance engineering and management, 12(6), 1247–1261. https://doi.org/10.1007/s13198-021-01179-8%0A%0A

  34. [34] Yazdavar, A. H., Shaaban, M. F., El-Saadany, E. F., Salama, M. M. A., & Zeineldin, H. H. (2020). Optimal planning of distributed generators and shunt capacitors in isolated microgrids with nonlinear loads. IEEE transactions on sustainable energy, 11(4), 2732–2744. https://doi.org/10.1109/TSTE.2020.2973086

  35. [35] Amrr, S. M., Asghar, M. S. J., Ashraf, I., Meraj, M., & others. (2020). A comprehensive review of power flow controllers in interconnected power system networks. IEEE access, 8, 18036–18063. https://doi.org/10.1109/ACCESS.2020.2968461

  36. [36] Vaiman, M., Chen, Y., Chowdhury, B., Dobson, I., Hines, P., Papic, M., & Zhang, P. (2011). Risk assessment of cascading outages: Methodologies and challenges. IEEE transactions on power systems, 27(2), 631–641. https://doi.org/10.1109/TPWRS.2011.2177868

  37. [37] Dashti, R., Daisy, M., Mirshekali, H., Shaker, H. R., & Aliabadi, M. H. (2021). A survey of fault prediction and location methods in electrical energy distribution networks. Measurement, 184, 109947. https://doi.org/10.1016/j.measurement.2021.109947

  38. [38] Amin, S. M. (2011). Smart grid: Overview, issues and opportunities. advances and challenges in sensing, modeling, simulation, optimization and control. European journal of control, 17(5–6), 547–567. https://doi.org/10.3166/ejc.17.547-567

  39. [39] Husain, T., & Ansari, M. M. (2016). Distribution load flow analysis for radial and mesh distribution system. International journal of electrical engineering and technology (ijeet), 7(3), 157-168. http://www.iaeme.com/ijeet/issues.asp?JType=IJEET&VType=7&IType=3

  40. [40] Moradi, M. H., Foroutan, V. B., & Abedini, M. (2017). Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach. Renewable and sustainable energy reviews, 69, 248–262. https://doi.org/10.1016/j.rser.2016.11.156

  41. [41] Shakarami, M. R., Beiranvand, H., Beiranvand, A., & Sharifipour, E. (2017). A recursive power flow method for radial distribution networks: Analysis, solvability and convergence. International journal of electrical power & energy systems, 86, 71–80. https://doi.org/10.1016/j.ijepes.2016.10.002

  42. [42] Yan, P., & Sekar, A. (2005). Analysis of radial distribution systems with embedded series FACTS devices using a fast line flow-based algorithm. IEEE transactions on power systems, 20(4), 1775–1782. https://doi.org/10.1109/TPWRS.2005.856986

  43. [43] Conejo, A. J., & Baringo, L. (2018). Power system operations (Vol. 11). Springer. https://doi.org/10.1007/978-3-319-69407-8

  44. [44] De-Mel, I., Klymenko, O. V, & Short, M. (2022). Balancing accuracy and complexity in optimisation models of distributed energy systems and microgrids with optimal power flow: A review. Sustainable energy technologies and assessments, 52, 102066. https://doi.org/10.1016/j.seta.2022.102066

  45. [45] Raza, M. (2014). Load flow calculation and its application. PowerFactory applications for power system analysis (pp. 1–25). Springer. https://doi.org/10.1007/978-3-319-12958-7_1%0A%0A

  46. [46] Zad, B. B., Hasanvand, H., Lobry, J., & Vallée, F. (2015). Optimal reactive power control of DGs for voltage regulation of MV distribution systems using sensitivity analysis method and PSO algorithm. International journal of electrical power & energy systems, 68, 52–60. https://doi.org/10.1016/j.ijepes.2014.12.046

  47. [47] Kulworawanichpong, T. (2010). Simplified Newton-Raphson power-flow solution method. International journal of electrical power & energy systems, 32(6), 551–558. https://doi.org/10.1016/j.ijepes.2009.11.011

  48. [48] Lee, J. O., Kim, Y. S., & Jeon, J. H. (2022). Generic power flow algorithm for bipolar DC microgrids based on Newton-Raphson method. International journal of electrical power & energy systems, 142, 108357. https://doi.org/10.1016/j.ijepes.2022.108357

  49. [49] Swain, A., Abdellatif, E., Mousa, A., & Pong, P. W. T. (2022). Sensor technologies for transmission and distribution systems: A review of the latest developments. Energies, 15(19), 7339. https://doi.org/10.3390/en15197339

  50. [50] Mousa, H. H. H., Mahmoud, K., & Lehtonen, M. (2024). A comprehensive review on recent developments of hosting capacity estimation and optimization for active distribution networks. IEEe access, 12, 18545–18593. https://doi.org/10.1109/ACCESS.2024.3359431

  51. [51] Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., … & Wen, J. (2020). Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied energy, 278, 115733. https://doi.org/10.1016/j.apenergy.2020.115733

  52. [52] Jereminov, M., Pandey, A., Song, H. A., Hooi, B., Faloutsos, C., & Pileggi, L. (2017, September). Linear load model for robust power system analysis. 2017 IEEE PES innovative smart grid technologies conference europe (ISGT-Europe) (pp. 1-6). IEEE. https://doi.org/10.1109/ISGTEurope.2017.8260315

  53. [53] Pandey, A., Jereminov, M., Wagner, M. R., Bromberg, D. M., Hug, G., & Pileggi, L. (2018). Robust power flow and three-phase power flow analyses. IEEE transactions on power systems, 34(1), 616–626. https://doi.org/10.1109/TPWRS.2018.2863042

  54. [54] Alayande, A. S., Jimoh, A. A., & Yusuff, A. A. (2017). Approaches for solving modern power system problems—a review. 2017 ieee africon, 1214–1219. https://doi.org/10.1109/AFRCON.2017.8095655

  55. [55] Abbasi, A. R., & Mohammadi, M. (2023). Probabilistic load flow in distribution networks: An updated and comprehensive review with a new classification proposal. Electric power systems research, 222, 109497. https://doi.org/10.1016/j.epsr.2023.109497

  56. [56] Adejumobi, I. A., Adepoju, G. A., & Hamzat, K. A. (2013). Iterative techniques for load flow study: A comparative study for nigerian 330kv grid system as a case study. International journal of engineering and advanced technology, 3(1), 4–11. https://www.ijeat.org/wp-content/uploads/papers/v3i1/F2043082613.pdf

  57. [57] Barrenechea, R., de Vicuña, L. G., Castilla, M., Rypin, F., & Paiva-Mata, P. (2022). Variations of the Gauss Seidel and the gauss implicit z-bus load flow methods for primary-secondary integrated distribution grids. Electric power systems research, 210, 108061. https://doi.org/10.1016/j.epsr.2022.108061

  58. [58] Alnabi, L. A., Dhaher, A. K., & Essa, M. B. (2022). Optimal allocation of distributed generation with reconfiguration by genetic algorithm using both newton raphson and gauss seidel methods for power losses minimizing. International journal of intelligent engineering & systems, 15(1), 464-476. https://doi.org/10.22266/ijies2022.0228.42

  59. [59] Awad, M. (2023). Investigating the Best Methods to solve linear simultaneous equations and the impact on their high school students' achievement in Algebra: A case study in a private American school in Dubai (Thesis). https://www.proquest.com/openview/a8512e710db64ce11c24f08a048a77e1/1?pq-origsite=gscholar&cbl=2026366&diss=y

  60. [60] Montoya, O. D., Gil-González, W., & Garces, A. (2020). Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges. International journal of electrical power & energy systems, 123, 106299. https://doi.org/10.1016/j.ijepes.2020.106299

  61. [61] Rangavalli, V., & Komma Lavanya, D. (2022). Analysis of IEEE 33, 34 and 69 Bus Systems using Gauss Seidel. International journal for research in applied science and engineering technology, 10(6), 3867–3871. https://doi.org/10.22214/ijraset.2022.44764

  62. [62] Ahmadi, H., Vahidi, B., Aghaee, S. S., Hosseinian, S. H., & Mosallanejad, A. (2020). A new load-flow method in distribution networks based on an approximation voltage-dependent load model in extensive presence of distributed generation sources. AUT journal of electrical engineering, 52(2), 133–146. https://doi.org/10.22060/eej.2020.18258.5348

  63. [63] Teja, B. R., Murty, V., Kumar, A., & others. (2016). An efficient and simple load flow approach for radial and meshed distribution networks. International journal of grid and distributed computing, 9(2), 85–102. http://dx.doi.org/10.14257/ijgdc.2016.9.2.09

  64. [64] Ghosh, S., & Sherpa, K. S. (2008). An efficient method for load-flow solution of radial distribution networks. International journal of electrical, computer, energetic, electronic and communication engineering, 2(9), 2094-2101. https://www.researchgate.net

  65. [65] Visali, N., Reddy, M. S. K., & Reddy, M. S. (2014). A modified unbalanced load flow solution using branch incidence matrix. I-manager’s journal on electrical engineering, 7(3), 27. https://doi.org/10.26634/jee.7.3.2706

  66. [66] Portelinha, R. K., Durce, C. C., Tortelli, O. L., & Lourenço, E. M. (2021). Fast-decoupled power flow method for integrated analysis of transmission and distribution systems. Electric power systems research, 196, 107215. https://doi.org/10.1016/j.epsr.2021.107215

  67. [67] Rafi, F. H. M., Hossain, M. J., Rahman, M. S., & Taghizadeh, S. (2020). An overview of unbalance compensation techniques using power electronic converters for active distribution systems with renewable generation. Renewable and sustainable energy reviews, 125, 109812. https://doi.org/10.1016/j.rser.2020.109812

  68. [68] Roald, L., Misra, S., Krause, T., & Andersson, G. (2016). Corrective control to handle forecast uncertainty: A chance constrained optimal power flow. IEEE transactions on power systems, 32(2), 1626–1637. https://doi.org/10.1109/TPWRS.2016.2602805

  69. [69] Kahrobaeian, A., & Mohamed, Y. A. R. I. (2013). Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE transactions on industrial electronics, 61(4), 1643–1658. https://doi.org/10.1109/TIE.2013.2264790

  70. [70] Ghiasi, M. (2018). A detailed study for load flow analysis in distributed power system. International journal of industrial electronics control and optimization, 1(2), 153–160. https://doi.org/10.22111/ieco.2018.24423.1027

  71. [71] Guamán, W. P., Pesántez, G. N., Proaño, X. A., Pérez, E. M., & Tigse, W. V. (2020). Power flow solution combining newton-raphson and fast decoupled methods. International conference on innovation and research (pp. 222-233). https://doi.org/10.1007/978-3-030-60467-7_19%0A%0A

  72. [72] Al-Jaafreh, M. A. A., & Mokryani, G. (2019). Planning and operation of LV distribution networks: A comprehensive review. IET energy systems integration, 1(3), 133–146. https://doi.org/10.1049/iet-esi.2019.0013

  73. [73] Su, J., Lie, T. T., & Zamora, R. (2020). Integration of electric vehicles in distribution network considering dynamic power imbalance issue. IEEE transactions on industry applications, 56(5), 5913–5923. https://doi.org/10.1109/TIA.2020.2990106

  74. [74] Táczi, I., Sinkovics, B., Vokony, I., & Hartmann, B. (2021). The challenges of low voltage distribution system state estimation—an application oriented review. Energies, 14(17), 5363. https://doi.org/10.3390/en14175363

  75. [75] Dobbe, R., van Westering, W., Liu, S., Arnold, D., Callaway, D., & Tomlin, C. (2019). Linear single-and three-phase voltage forecasting and Bayesian state estimation with limited sensing. IEEE transactions on power systems, 35(3), 1674–1683. https://doi.org/10.1109/TPWRS.2019.2955893

  76. [76] Bizzarri, F., Brambilla, A., Gajani, G. S., & Banerjee, S. (2014). Simulation of real world circuits: Extending conventional analysis methods to circuits described by heterogeneous languages. IEEE circuits and systems magazine, 14(4), 51–70. https://doi.org/10.1109/MCAS.2014.2360803

  77. [77] Wang, H., Wang, Q., Tang, Y., & Ye, Y. (2022). Spatial load migration in a power system: Concept, potential and prospects. International journal of electrical power & energy systems, 140, 107926. https://doi.org/10.1016/j.ijepes.2021.107926

Published

2025-09-25

Issue

Section

Articles

How to Cite

Nworah, K., Abia, E., & Ekanem, I. (2025). A Technical Review on the Conventional Analytical Techniques for Optimal Load Flow Investigation on Distribution Feeder Systems Network. Optimality, 2(4), 233-251. https://doi.org/10.22105/opt.vi.70

Similar Articles

1-10 of 44

You may also start an advanced similarity search for this article.