MHD Flow and Heat Transfer of a Hybrid Nanofluid Past a Permeable Stretching/Shrinking Wedge
Abstract
The present article intends to discuss the flow of an electromagnetic hybrid nanofluid over an expanding/contracting wedge considering the combination of the oxide particle alumina and the metal particle copper in conventional fluid water. Further, the heat transport phenomenon is enhanced for the inclusion of thermal radiation. Following the recent applications used in industrial production processes, cooling of electronic devices, peristaltic pumping processes, drug delivery systems, blood flow through arteries, etc., the role of nanofluid, as well as hybrid nanofluid, is important. The proposed assumptions govern the flow phenomenon are nonlinear and partial. Therefore, appropriate similarity transformation is used for the conversion of non-dimensional ordinary equations and further, traditional numerical technique is adopted to handle the governing equations. The physical properties of the parameters involved are simulated through graphs and tables.
Keywords:
Hybrid nanofluid, Stretching/shrinking wedge, Magnetic field, Radiation, Numerical techniqueReferences
- [1] Choi, S. U. S., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. https://www.osti.gov/biblio/196525
- [2] Devi, S. P. A., & Devi, S. S. U. (2016). Numerical investigation of hydromagnetic hybrid Cu--Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International journal of nonlinear sciences and numerical simulation, 17(5), 249–257. https://doi.org/10.1515/ijnsns-2016-0037
- [3] Falkneb, V. M., & Skan, S. W. (1931). Solutions of the boundary-layer equations. The London, edinburgh, and dublin philosophical magazine and journal of science, 12(80), 865–896. https://doi.org/10.1080/14786443109461870
- [4] Hartree, D. R. (1937). On an equation occurring in falkner and skan’s approximate treatment of the equations of the boundary layer. Mathematical proceedings of the cambridge philosophical society (Vol. 33, pp. 223–239). Cambridge University Press. https://doi.org/10.1017/S0305004100019575
- [5] Riley, N., & Weidman, P. D. (1989). Multiple solutions of the Falkner--Skan equation for flow past a stretching boundary. SIAM journal on applied mathematics, 49(5), 1350–1358. https://doi.org/10.1137/0149081
- [6] Alam, M. S., Khatun, M. A., Rahman, M. M., & Vajravelu, K. (2016). Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers. International journal of mechanical sciences, 105, 191–205. https://doi.org/10.1016/j.ijmecsci.2015.11.018
- [7] Khan, U., Ahmed, N., Mohyud-Din, S. T., & Bin-Mohsin, B. (2017). Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural computing and applications, 28, 2041–2050. https://doi.org/10.1007/s00521-016-2187-x
- [8] Awaludin, I. S., Ishak, A., & Pop, I. (2018). On the stability of MHD boundary layer flow over a stretching/shrinking wedge. Scientific reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-31777-9
- [9] Waini, I., Ishak, A., & Pop, I. (2021). Melting heat transfer of a hybrid nanofluid flow towards a stagnation point region with second-order slip. Proceedings of the institution of mechanical engineers, part e: journal of process mechanical engineering, 235(2), 405–415. https://doi.org/10.1177/0954408920961213
- [10] Waini, I., Ishak, A., & Pop, I. (2019). Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition. Journal of physics: conference series (Vol. 1366, p. 12022). IOP Publishing. https://doi.org/10.1088/1742-6596/1366/1/012022
- [11] Swain, K., Mebarek-Oudina, F., & Abo-Dahab, S. M. (2022). Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. Journal of thermal analysis and calorimetry, 147(2), 1561–1570. https://doi.org/10.1007/s10973-020-10432-4
- [12] Dinarvand, S., Yousefi, M., & Chamkha, A. (2022). Numerical simulation of unsteady flow toward a stretching/shrinking sheet in porous medium filled with a hybrid nanofluid. Journal of applied and computational mechanics, 8(1), 11–20. https://doi.org/10.22055/jacm.2019.29407.1595
- [13] Lund, L. A., Omar, Z., Khan, I., & Sherif, E.-S. M. (2020). Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow. Symmetry, 12(2), 276. https://www.mdpi.com/2073-8994/12/2/276
- [14] Thumma, T., & Mishra, S. R. (2018). Effect of viscous dissipation and Joule heating on magnetohydrodynamic Jeffery nanofluid flow with and without multi slip boundary conditions. Journal of nanofluids, 7(3), 516–526. https://doi.org/10.1166/jon.2018.1469
- [15] Pattnaik, P. K., Bhatti, M. M., Mishra, S. R., Abbas, M. A., & Bég, O. A. (2022). Mixed convective-radiative dissipative magnetized micropolar nanofluid flow over a stretching surface in porous media with double stratification and chemical reaction effects: ADM-Padé computation. Journal of mathematics, 2022(1), 9888379. https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/9888379
- [16] Thumma, T., Ahammad, N. A., Swain, K., Animasauan, I. L., & Mishra, S. R. (2022). Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant. Waves in random and complex media, 1–18. https://doi.org/10.1080/17455030.2022.2032471
- [17] Khashi’ie, N. S., Arifin, N. M., & Pop, I. (2022). Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria engineering journal, 61(3), 1938–1945. https://doi.org/10.1016/j.aej.2021.07.032
- [18] Lund, L. A., Omar, Z., Dero, S., Chu, Y., Khan, I., & others. (2020). Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: Partial slip conditions. Computers, materials and continua, 66(2), 1963–1975. http://dx.doi.org/10.32604/cmc.2020.011976
- [19] Khashi’ie, N. S., Waini, I., Arifin, N. M., & Pop, I. (2021). Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field. Scientific reports, 11(1), 14128. https://www.nature.com/articles/s41598-021-93644-4
- [20] Zainal, N. A., Nazar, R., Naganthran, K., & Pop, I. (2021). Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity. Alexandria engineering journal, 60(1), 915–926. https://www.sciencedirect.com/science/article/pii/S1110016820305391
- [21] Waini, I., Ishak, A., & Pop, I. (2020). MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied mathematics and mechanics, 41(3), 507–520. https://doi.org/10.1007/s10483-020-2584-7
- [22] Dinarvand, S., Rostami, M. N., & Pop, I. (2019). A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Scientific reports, 9(1), 16290. https://www.nature.com/articles/s41598-019-52720-6
- [23] Shanmugapriya, M., Sundareswaran, R., & Senthil Kumar, P. (2021). Heat and mass transfer enhancement of MHD hybrid nanofluid flow in the presence of activation energy. International journal of chemical engineering, 2021(1), 9473226. https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9473226
- [24] Waini, I., Ishak, A., & Pop, I. (2021). Hybrid nanofluid flow with homogeneous-heterogeneous reactions. Computers, materials & continua, 68(3), 3255–3269. https://cdn.techscience.cn/ueditor/files/cmc/TSP-CMC-68-3/TSP_CMC_17643/TSP_CMC_17643.pdf
- [25] Khashi’ie, N. S., Arifin, N. M., Hafidzuddin, E. H., & Wahi, N. (2019). Thermally stratified flow of Cu-Al2O3/water hybrid nanofluid past a permeable stretching/shrinking circular cylinder. Journal of advanced research in fluid mechanics and thermal sciences, 63(1), 154–163. http://semarakilmu.com
- [26] Mishra, P., Acharya, M. R., & Panda, S. (2021). Mixed convection MHD nanofluid flow over a wedge with temperature-dependent heat source. Pramana, 95, 1–12. https://doi.org/10.1007/s12043-021-02087-z
- [27] Anuar, N. S., Bachok, N., & Pop, I. (2020). Cu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditions. Mathematics, 8(8), 1237. https://www.mdpi.com/2227-7390/8/8/1237
- [28] Anuar, N. S., Bachok, N., Arifin, N. M., & Rosali, H. (2021). Analysis of Al2O3-Cu nanofluid flow behaviour over a permeable moving wedge with convective surface boundary conditions. Journal of king saud university-science, 33(3), 101370. https://www.sciencedirect.com/science/article/pii/S1018364721000318
- [29] Gherasim, I., Roy, G., Nguyen, C. T., & Vo-Ngoc, D. (2009). Experimental investigation of nanofluids in confined laminar radial flows. International journal of thermal sciences, 48(8), 1486–1493. https://doi.org/10.1016/j.ijthermalsci.2009.01.008
- [30] Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International journal of thermal sciences, 48(2), 363–371. https://doi.org/10.1016/j.ijthermalsci.2008.03.009
- [31] Ahmad, S., Ali, K., Rizwan, M., & Ashraf, M. (2021). Heat and mass transfer attributes of copper–aluminum oxide hybrid nanoparticles flow through a porous medium. Case studies in thermal engineering, 25, 100932. https://www.sciencedirect.com/science/article/pii/S2214157X21000952
- [32] Wang, C. Y. (2008). Stagnation flow towards a shrinking sheet. International journal of non-linear mechanics, 43(5), 377–382. https://doi.org/10.1016/j.ijnonlinmec.2007.12.021
- [33] Bachok, N., Ishak, A., Nazar, R., & Senu, N. (2013). Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid. Boundary value problems, 2013, 1–10. https://doi.org/10.1186/1687-2770-2013-39
- [34] Yacob, N. A., Ishak, A., & Pop, I. (2011). Falkner–Skan problem for a static or moving wedge in nanofluids. International Journal of Thermal Sciences, 50(2), 133-139. https://doi.org/10.1016/j.ijthermalsci.2010.10.008