MHD Flow and Heat Transfer of a Hybrid Nanofluid Past a Permeable Stretching/Shrinking Wedge
DOI:
https://doi.org/10.22105/opt.v1i2.33Keywords:
Hybrid nanofluid, Stretching/shrinking wedge, Magnetic field, Radiation, Numerical techniqueAbstract
The present article intends to discuss the flow of an electromagnetic hybrid nanofluid over an expanding/contracting wedge considering the combination of the oxide particle alumina and the metal particle copper in conventional fluid water. Further, the heat transport phenomenon is enhanced for the inclusion of thermal radiation. Following the recent applications used in industrial production processes, cooling of electronic devices, peristaltic pumping processes, drug delivery systems, blood flow through arteries, etc., the role of nanofluid, as well as hybrid nanofluid, is important. The proposed assumptions govern the flow phenomenon are nonlinear and partial. Therefore, appropriate similarity transformation is used for the conversion of non-dimensional ordinary equations and further, traditional numerical technique is adopted to handle the governing equations. The physical properties of the parameters involved are simulated through graphs and tables.
References
Choi, S. U. S., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. https://www.osti.gov/biblio/196525
Devi, S. P. A., & Devi, S. S. U. (2016). Numerical investigation of hydromagnetic hybrid Cu--Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International journal of nonlinear sciences and numerical simulation, 17(5), 249–257. https://doi.org/10.1515/ijnsns-2016-0037
Falkneb, V. M., & Skan, S. W. (1931). Solutions of the boundary-layer equations. The London, edinburgh, and dublin philosophical magazine and journal of science, 12(80), 865–896. https://doi.org/10.1080/14786443109461870
Hartree, D. R. (1937). On an equation occurring in falkner and skan’s approximate treatment of the equations of the boundary layer. Mathematical proceedings of the cambridge philosophical society (Vol. 33, pp. 223–239). Cambridge University Press. https://doi.org/10.1017/S0305004100019575
Riley, N., & Weidman, P. D. (1989). Multiple solutions of the Falkner--Skan equation for flow past a stretching boundary. SIAM journal on applied mathematics, 49(5), 1350–1358. https://doi.org/10.1137/0149081
Alam, M. S., Khatun, M. A., Rahman, M. M., & Vajravelu, K. (2016). Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers. International journal of mechanical sciences, 105, 191–205. https://doi.org/10.1016/j.ijmecsci.2015.11.018
Khan, U., Ahmed, N., Mohyud-Din, S. T., & Bin-Mohsin, B. (2017). Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural computing and applications, 28, 2041–2050. https://doi.org/10.1007/s00521-016-2187-x
Awaludin, I. S., Ishak, A., & Pop, I. (2018). On the stability of MHD boundary layer flow over a stretching/shrinking wedge. Scientific reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-31777-9
Waini, I., Ishak, A., & Pop, I. (2021). Melting heat transfer of a hybrid nanofluid flow towards a stagnation point region with second-order slip. Proceedings of the institution of mechanical engineers, part e: journal of process mechanical engineering, 235(2), 405–415. https://doi.org/10.1177/0954408920961213
Waini, I., Ishak, A., & Pop, I. (2019). Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition. Journal of physics: conference series (Vol. 1366, p. 12022). IOP Publishing. https://doi.org/10.1088/1742-6596/1366/1/012022
Swain, K., Mebarek-Oudina, F., & Abo-Dahab, S. M. (2022). Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. Journal of thermal analysis and calorimetry, 147(2), 1561–1570. https://doi.org/10.1007/s10973-020-10432-4
Dinarvand, S., Yousefi, M., & Chamkha, A. (2022). Numerical simulation of unsteady flow toward a stretching/shrinking sheet in porous medium filled with a hybrid nanofluid. Journal of applied and computational mechanics, 8(1), 11–20. https://doi.org/10.22055/jacm.2019.29407.1595
Lund, L. A., Omar, Z., Khan, I., & Sherif, E.-S. M. (2020). Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow. Symmetry, 12(2), 276. https://www.mdpi.com/2073-8994/12/2/276
Thumma, T., & Mishra, S. R. (2018). Effect of viscous dissipation and Joule heating on magnetohydrodynamic Jeffery nanofluid flow with and without multi slip boundary conditions. Journal of nanofluids, 7(3), 516–526. https://doi.org/10.1166/jon.2018.1469
Pattnaik, P. K., Bhatti, M. M., Mishra, S. R., Abbas, M. A., & Bég, O. A. (2022). Mixed convective-radiative dissipative magnetized micropolar nanofluid flow over a stretching surface in porous media with double stratification and chemical reaction effects: ADM-Padé computation. Journal of mathematics, 2022(1), 9888379. https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/9888379
Thumma, T., Ahammad, N. A., Swain, K., Animasauan, I. L., & Mishra, S. R. (2022). Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant. Waves in random and complex media, 1–18. https://doi.org/10.1080/17455030.2022.2032471
Khashi’ie, N. S., Arifin, N. M., & Pop, I. (2022). Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria engineering journal, 61(3), 1938–1945. https://doi.org/10.1016/j.aej.2021.07.032
Lund, L. A., Omar, Z., Dero, S., Chu, Y., Khan, I., & others. (2020). Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: Partial slip conditions. Computers, materials and continua, 66(2), 1963–1975. http://dx.doi.org/10.32604/cmc.2020.011976
Khashi’ie, N. S., Waini, I., Arifin, N. M., & Pop, I. (2021). Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field. Scientific reports, 11(1), 14128. https://www.nature.com/articles/s41598-021-93644-4
Zainal, N. A., Nazar, R., Naganthran, K., & Pop, I. (2021). Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity. Alexandria engineering journal, 60(1), 915–926. https://www.sciencedirect.com/science/article/pii/S1110016820305391
Waini, I., Ishak, A., & Pop, I. (2020). MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied mathematics and mechanics, 41(3), 507–520. https://doi.org/10.1007/s10483-020-2584-7
Dinarvand, S., Rostami, M. N., & Pop, I. (2019). A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Scientific reports, 9(1), 16290. https://www.nature.com/articles/s41598-019-52720-6
Shanmugapriya, M., Sundareswaran, R., & Senthil Kumar, P. (2021). Heat and mass transfer enhancement of MHD hybrid nanofluid flow in the presence of activation energy. International journal of chemical engineering, 2021(1), 9473226. https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9473226
Waini, I., Ishak, A., & Pop, I. (2021). Hybrid nanofluid flow with homogeneous-heterogeneous reactions. Computers, materials & continua, 68(3), 3255–3269. https://cdn.techscience.cn/ueditor/files/cmc/TSP-CMC-68-3/TSP_CMC_17643/TSP_CMC_17643.pdf
Khashi’ie, N. S., Arifin, N. M., Hafidzuddin, E. H., & Wahi, N. (2019). Thermally stratified flow of Cu-Al2O3/water hybrid nanofluid past a permeable stretching/shrinking circular cylinder. Journal of advanced research in fluid mechanics and thermal sciences, 63(1), 154–163. http://semarakilmu.com
Mishra, P., Acharya, M. R., & Panda, S. (2021). Mixed convection MHD nanofluid flow over a wedge with temperature-dependent heat source. Pramana, 95, 1–12. https://doi.org/10.1007/s12043-021-02087-z
Anuar, N. S., Bachok, N., & Pop, I. (2020). Cu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditions. Mathematics, 8(8), 1237. https://www.mdpi.com/2227-7390/8/8/1237
Anuar, N. S., Bachok, N., Arifin, N. M., & Rosali, H. (2021). Analysis of Al2O3-Cu nanofluid flow behaviour over a permeable moving wedge with convective surface boundary conditions. Journal of king saud university-science, 33(3), 101370. https://www.sciencedirect.com/science/article/pii/S1018364721000318
Gherasim, I., Roy, G., Nguyen, C. T., & Vo-Ngoc, D. (2009). Experimental investigation of nanofluids in confined laminar radial flows. International journal of thermal sciences, 48(8), 1486–1493. https://doi.org/10.1016/j.ijthermalsci.2009.01.008
Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International journal of thermal sciences, 48(2), 363–371. https://doi.org/10.1016/j.ijthermalsci.2008.03.009
Ahmad, S., Ali, K., Rizwan, M., & Ashraf, M. (2021). Heat and mass transfer attributes of copper–aluminum oxide hybrid nanoparticles flow through a porous medium. Case studies in thermal engineering, 25, 100932. https://www.sciencedirect.com/science/article/pii/S2214157X21000952
Wang, C. Y. (2008). Stagnation flow towards a shrinking sheet. International journal of non-linear mechanics, 43(5), 377–382. https://doi.org/10.1016/j.ijnonlinmec.2007.12.021
Bachok, N., Ishak, A., Nazar, R., & Senu, N. (2013). Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid. Boundary value problems, 2013, 1–10. https://doi.org/10.1186/1687-2770-2013-39
Yacob, N. A., Ishak, A., & Pop, I. (2011). Falkner–Skan problem for a static or moving wedge in nanofluids. International Journal of Thermal Sciences, 50(2), 133-139. https://doi.org/10.1016/j.ijthermalsci.2010.10.008