Optimization of Co-pyrolysis Process for Sustainable Distributed Power and Industrial Development in Nigeria: A Pathway Analysis

Authors

  • Okwuchi Smith Onyekwere Faculty of Engineering, Federal University Wukari, Nigeria.
  • Adinife Patrick Azodo Faculty of Engineering, Federal University Wukari, Nigeria.
  • Amani David Haruna Department of Chemical Engineering, Federal University Wukari, Nigeria.

DOI:

https://doi.org/10.22105/opt.v1i1

Keywords:

Power generation, Electrification‎, Waste management, Agricultural residue, Energy management

Abstract

This paper analyzes existing research to assess the potential of co-pyrolysis for sustainable distributed power generation in off-grid Nigerian communities. A meta-analysis review methodology was used to assess the techno-economic and environmental aspects of co-pyrolysis, focusing on its ability to simultaneously address waste management and energy insecurity, encouraging industrial development. The analysis revealed a promising opportunity to utilize readily available plastic waste and agricultural residues for syngas production. The review identifies key factors influencing energy conversion efficiency and cost-effectiveness compared to traditional waste management methods. The potential sources of revenue from syngas use were explored, and the environmental concerns such as emissions and coal disposal were addressed. Additionally, the review provides a path analysis for stakeholders by highlighting knowledge gaps and suggesting areas for further research and development. The results provide valuable insights for policymakers, engineers, and researchers to develop an optimal, sustainable, cost-effective solution for off-grid electrification in Nigeria and encourage industrialization at various scales.              

References

https://www.eia.gov/international/analysis/country/NGA

‎[2] ‎ World Bank. (2022). Solid waste management. ‎https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management

‎[3] ‎ African Development Bank. (2018). Nigeria electrification project. ‎https://www.afdb.org/fileadmin/uploads/afdb/Documents/Project-and-‎Operations/PESR_NG_NIGERIA_ELECTRIFICATION_PROJECT_CORR_EN-final.pdf

‎[4] ‎ International Energy Agency. (2023). World energy outlook 2023. https://www.iea.org/reports/world-‎energy-outlook-‎

‎[5] ‎ Olujobi, O. J., Okorie, U. E., Olarinde, E. S., & Aina-Pelemo, A. D. (2023). Legal responses to energy ‎security and sustainability in Nigeria’s power sector amidst fossil fuel disruptions and low carbon ‎energy transition. Heliyon, 9(7), e17912. https://doi.org/10.1016/j.heliyon.2023.e17912‎

‎[6] ‎ Edomah, N. (2016). On the path to sustainability: Key issues on Nigeria’s sustainable energy ‎development. Energy reports, 2, 28–34. https://doi.org/10.1016/j.egyr.2016.01.004‎

‎[7] ‎ Mohamed, B. A., Ellis, N., Kim, C. S., & Bi, X. (2017). The role of tailored biochar in increasing plant ‎growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. ‎Environmental pollution, 230, 329–338. https://doi.org/10.1016/j.envpol.2017.06.075‎

‎[8] ‎ Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016). Toxic pollutants from plastic waste-‎a review. Procedia environmental sciences, 35, 701–708. https://doi.org/10.1016/j.proenv.2016.07.069‎

‎[9] ‎ Mo, F., Ullah, H., Zada, N., & Shahab, A. (2023). A review on catalytic co-pyrolysis of biomass and ‎plastics waste as a thermochemical conversion to produce valuable products. Energies, 16(14), 5403. ‎https://doi.org/10.3390/en16145403‎

‎[10] ‎ Abnisa, F., & Daud, W. M. A. W. (2014). A review on co-pyrolysis of biomass: an optional technique to ‎obtain a high-grade pyrolysis oil. Energy conversion and management, 87, 71–85. ‎https://doi.org/10.1016/j.enconman.2014.07.007‎

‎[11] ‎ Bridgwater, A. V, Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic ‎geochemistry, 30(12), 1479–1493. https://doi.org/10.1016/S0146-6380(99)00120-5‎

‎[12] ‎ Seah, C. C., Tan, C. H., Arifin, N. A., Hafriz, R., Salmiaton, A., Nomanbhay, S., & Shamsuddin, A. H. ‎‎(2023). Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of ‎synergistic mechanism. Results in engineering, 17, 100989. https://doi.org/10.1016/j.rineng.2023.100989‎

‎[13] ‎ Nnaji, C. E., & Uzoma, C. C. (2015). CIA world factbook, Nigeria. ‎http://www.cia.gov/library/publications/the-world-factbook/geos/ni.html

‎[14] ‎ Oyedepo, S. O. (2012). Energy and sustainable development in Nigeria: the way forward. Energy, ‎sustainability and society, 2, 1–17. https://doi.org/10.1186/2192-0567-2-15‎

‎[15] ‎ Kaygusuz, K. (2012). Energy for sustainable development: A case of developing countries. Renewable ‎and sustainable energy reviews, 16(2), 1116–1126. https://doi.org/10.1016/j.rser.2011.11.013‎

‎[16] ‎ Batista, M., Caiado, R. G. G., Quelhas, O. L. G., Lima, G. B. A., Leal Filho, W., & Yparraguirre, I. T. R. ‎‎(2021). A framework for sustainable and integrated municipal solid waste management: Barriers and ‎critical factors to developing countries. Journal of cleaner production, 312, 127516. ‎https://doi.org/10.1016/j.jclepro.2021.127516‎

‎[17] ‎ Marshall, R. E., & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management ‎in developing countries. Waste management, 33(4), 988–1003. ‎https://doi.org/10.1016/j.wasman.2012.12.023‎

‎[18] ‎ Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2022). Waste-to-energy nexus: An overview of ‎technologies and implementation for sustainable development. Cleaner energy systems, 3, 100034. ‎https://doi.org/10.1016/j.cles.2022.100034‎

‎[19] ‎ Akhtar, M., Hannan, M. A., Basri, H., & Scavino, E. (2015). Solid waste generation and collection ‎efficiencies: Issues and challenges. Journal tecknology, 75(11). https://doi.org/10.11113/jt.v75.5331‎

‎[20] ‎ Castellano, A., Kendall, A., Nikomarov, M., & Swemmer, T. (2015). Brighter Africa: The growth potential ‎of the sub-Saharan electricity sector. https://www.inclusivebusiness.net/node/715‎

‎[21] ‎ Avila, N., Carvallo, J. P., Shaw, B., & Kammen, D. M. (2017). The energy challenge in sub-Saharan ‎Africa: A guide for advocates and policy makers. Generating energy for sustainable and equitable ‎development, 1, 1–79.‎

‎[22] ‎ Osagie, I., Peter, I., Okougha, A. F., Umanah, I. I., Aitanke, F. O., & Fiyebo, S. A. B. (2016). Hazards ‎assessment analyses of fossil-fuel generators: holistic-study of human experiences and perceptions in ‎south-southern Nigeria. Journal of sustainable development studies, 9(2), 153–242.‎

‎[23] ‎ Amoah, S. T., Kosoe, E. A., & others. (2014). Solid waste management in urban areas of Ghana: issues ‎and experiences from Wa. Journal of environment pollution and human health, 2(5), 110–117. ‎DOI:10.12691/jephh-2-5-3‎

‎[24] ‎ Pujara, Y., Pathak, P., Sharma, A., & Govani, J. (2019). Review on Indian municipal solid waste ‎management practices for reduction of environmental impacts to achieve sustainable development ‎goals. Journal of environmental management, 248, 109238. https://doi.org/10.1016/j.jenvman.2019.07.009‎

‎[25] ‎ Guillaumont, P., & Simonet, C. (2011). To what extent are African countries vulnerable to climate change? ‎lessons from a new indicator of physical vulnerability to climate change. ‎https://www.econstor.eu/handle/10419/269269‎

‎[26] ‎ Valentine, S. V. (2011). Emerging symbiosis: Renewable energy and energy security. Renewable and ‎sustainable energy reviews, 15(9), 4572–4578. https://doi.org/10.1016/j.rser.2011.07.095‎

‎[27] ‎ Singh, J., Laurentiis, E. D., Scarlat, N., & Giordano, G. (2022). Recent developments in municipal solid ‎waste management. Waste management, 141, 641–654.‎

‎[28] ‎ Duru, R. U., Ikpeama, E. E., & Ibekwe, J. A. (2019). Challenges and prospects of plastic waste ‎management in Nigeria. Waste disposal & sustainable energy, 1, 117–126. https://doi.org/10.1007/s42768-‎‎019-00010-2‎

‎[29] ‎ Nyakuma, B. B., & Ivase, T. J. P. (2021). Emerging trends in sustainable treatment and valorisation ‎technologies for plastic wastes in Nigeria: A concise review. Environmental progress & sustainable ‎energy, 40(5), e13660. https://doi.org/10.1002/ep.13660‎

‎[30] ‎ Alabi, O. A., Ologbonjaye, K. I., Awosolu, O., & Alalade, O. E. (2019). Public and environmental health ‎effects of plastic wastes disposal: a review. Journal toxicol risk assess, 5(021), 1–13. ‎https://doi.org/10.23937/2572-4061.1510021‎

‎[31] ‎ Ikelle, I. I., Olivia, E. N., & Ogahc, O. A. (2023). Innovations for sustainable plastic waste management ‎in Nigeria. Environmental contaminants reviews, 6(2), 66–74.‎

‎[32] ‎ Onaji-Benson, T., & Ali, P. A. (2023). Addressing the plastic waste problem in Nigeria. ‎https://nesgroup.org/download_resource_documents/NRFP Policy Brief- Dr Theresa & Peter Agada ‎Ali_1701187431.pdf

‎[33] ‎ Ryu, H. W., Kim, D. H., Jae, J., Lam, S. S., Park, E. D., & Park, Y. K. (2020). Recent advances in catalytic ‎co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. ‎Bioresource technology, 310, 123473. https://doi.org/10.1016/j.biortech.2020.123473‎

‎[34] ‎ Abdullah, A., Ahmed, A., Akhter, P., Razzaq, A., Hussain, M., Hossain, N., … & Park, Y. K. (2021). ‎Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An ‎overview. Journal of cleaner production, 287, 125047. https://doi.org/10.1016/j.jclepro.2020.125047‎

‎[35] ‎ Martínez, J. D., Mahkamov, K., Andrade, R. V, & Lora, E. E. S. (2012). Syngas production in downdraft ‎biomass gasifiers and its application using internal combustion engines. Renewable energy, 38(1), 1–9. ‎https://doi.org/10.1016/j.renene.2011.07.035‎

‎[36] ‎ Akhator, P. E., & Obanor, A. I. (2018). Review on synthesis gas production in a downdraft biomass ‎gasifier for use in internal combustion engines in Nigeria. Journal of applied sciences and environmental ‎management, 22(10), 1689–1696. https://doi.org/10.4314/jasem.v22i10.28‎

‎[37] ‎ Barz, M., & Delivand, M. K. (2011). Agricultural residues as promising biofuels for biomass power ‎generation in Thailand. Journal of sustainable energy & environment special issue, 21, 27–37.‎

‎[38] ‎ Rahimi, Z., Anand, A., & Gautam, S. (2022). An overview on thermochemical conversion and potential ‎evaluation of biofuels derived from agricultural wastes. Energy nexus, 7, 100125. ‎https://doi.org/10.1016/j.nexus.2022.100125‎

‎[39] ‎ Park, C., Lee, N., Kim, J., & Lee, J. (2021). Co-pyrolysis of food waste and wood bark to produce ‎hydrogen with minimizing pollutant emissions. Environmental pollution, 270, 116045. ‎https://doi.org/10.1016/j.envpol.2020.116045‎

‎[40] ‎ Berthold, E. E. S., Deng, W., Zhou, J., Bertrand, A. M. E., Xu, J., & Jiang, L. (2023). Impact of plastic type ‎on synergistic effects during co-pyrolysis of rice husk and plastics. Energy, 281, 128270. ‎https://doi.org/10.1016/j.energy.2023.128270‎

‎[41] ‎ Hassan, H., Hameed, B. H., & Lim, J. K. (2020). Co-pyrolysis of sugarcane bagasse and waste high-‎density polyethylene: Synergistic effect and product distributions. Energy, 191, 116545. ‎https://doi.org/10.1016/j.energy.2019.116545‎

‎[42] ‎ Vibhakar, C., Sabeenian, R. S., Kaliappan, S., Patil, P. Y., Patil, P. P., Madhu, P., … & Ababu Birhanu, H. ‎‎(2022). Production and optimization of energy Rich Biofuel through Co-Pyrolysis by Utilizing Mixed ‎Agricultural Residues and Mixed Waste Plastics. Advances in materials science and engineering, 2022(1), ‎‎8175552. https://doi.org/10.1155/2022/8175552‎

‎[43] ‎ Zulkafli, A. H., Hassan, H., Ahmad, M. A., Din, A. T. M., & Wasli, S. M. (2023). Co-pyrolysis of biomass ‎and waste plastics for production of chemicals and liquid fuel: A review on the role of plastics and ‎catalyst types. Arabian journal of chemistry, 16(1), 104389. https://doi.org/10.1016/j.arabjc.2022.104389‎

‎[44] ‎ Solar, J., De Marco, I., Caballero, B. M., Lopez-Urionabarrenechea, A., Rodriguez, N., Agirre, I., & ‎Adrados, A. (2016). Influence of temperature and residence time in the pyrolysis of woody biomass ‎waste in a continuous screw reactor. Biomass and bioenergy, 95, 416–423. ‎https://doi.org/10.1016/j.biombioe.2016.07.004‎

‎[45] ‎ Elyounssi, K., Collard, F. X., Mateke, J. N., & Blin, J. (2012). Improvement of charcoal yield by two-step ‎pyrolysis on eucalyptus wood: A thermogravimetric study. Fuel, 96, 161–167. ‎https://doi.org/10.1016/j.fuel.2012.01.030‎

‎[46] ‎ Tsai, W. T., Lee, M. K., & Chang, Y. (2007). Fast pyrolysis of rice husk: Product yields and ‎compositions. Bioresource technology, 98(1), 22–28. https://doi.org/10.1016/j.biortech.2005.12.005‎

‎[47] ‎ Adrados, A., De Marco, I., Lopez-Urionabarrenechea, A., Solar, J., & Caballero, B. (2015). Avoiding tar ‎formation in biocoke production from waste biomass. Biomass and bioenergy, 74, 172–179. ‎https://doi.org/10.1016/j.biombioe.2015.01.021‎

‎[48] ‎ Adrados, A., Lopez-Urionabarrenechea, A., Solar, J., Requies, J., De Marco, I., & Cambra, J. F. (2013). ‎Upgrading of pyrolysis vapours from biomass carbonization. Journal of analytical and applied pyrolysis, ‎‎103, 293–299. https://doi.org/10.1016/j.jaap.2013.03.002‎

‎[49] ‎ Cortazar, M., Santamaria, L., Lopez, G., Alvarez, J., Zhang, L., Wang, R., … & Olazar, M. (2023). A ‎comprehensive review of primary strategies for tar removal in biomass gasification. Energy conversion ‎and management, 276, 116496. https://doi.org/10.1016/j.enconman.2022.116496‎

‎[50] ‎ Nawaz, A., & Razzak, S. A. (2024). Co-pyrolysis of biomass and different plastic waste to reduce ‎hazardous waste and subsequent production of energy products: A review on advancement, synergies, ‎and future prospects. Renewable energy, 224, 120103. https://doi.org/10.1016/j.renene.2024.120103‎

‎[51] ‎ Yalwaji, B., John-Nwagwu, H. O., & Sogbanmu, T. O. (2022). Plastic pollution in the environment in ‎Nigeria: A rapid systematic review of the sources, distribution, research gaps and policy needs. ‎Scientific african, 16, e01220. https://doi.org/10.1016/j.sciaf.2022.e01220‎

‎[52] ‎ Adeniran, A. A., Ayesu-Koranteng, E., & Shakantu, W. (2022). A review of the literature on the ‎environmental and health impact of plastic waste pollutants in sub-saharan africa. Pollutants, 2(4), 531–‎‎545. https://doi.org/10.3390/pollutants2040034‎

‎[53] ‎ Muzyka, R., Gałko, G., Ouadi, M., & Sajdak, M. (2023). Impact of plastic blends on the gaseous product ‎composition from the co-pyrolysis process. Energies, 16(2), 947. https://doi.org/10.3390/en16020947‎

‎[54] ‎ Mibei, Z. C., Kumar, A., & Talai, S. M. (2023). Catalytic pyrolysis of plastic waste to liquid fuel using ‎local clay catalyst. Journal of energy, 2023(1), 7862293. https://doi.org/10/1155/2023/7862293‎

‎[55] ‎ Muniyappan, D., Shrikar, B., Azhagu, U., K M, M. S. B., & Ramanathan, A. (2023). Research progress in ‎the co-pyrolysis of renewable biomass with plastic wastes for the synergetic production of chemicals ‎and biofuels: A review. Journal of renewable and sustainable energy, 15(2). ‎https://doi.org/10.1063/5.0142355‎

‎[56] ‎ Ukoba, M. O., Diemuodeke, E. O., Briggs, T. A., Imran, M., Owebor, K., & Nwachukwu, C. O. (2023). ‎Geographic information systems (GIS) approach for assessing the biomass energy potential and ‎identification of appropriate biomass conversion technologies in Nigeria. Biomass and bioenergy, 170, ‎‎106726. https://doi.org/10.1016/j.biombioe.2023.106726‎

‎[57] ‎ Anuge, O. S., Ghosh, A., & Ng, K. T. W. (2021). Utilization of organic wastes as a bio-resource: a case ‎study of corn cobs in Nigeria. Canadian society of civil engineering annual conference (pp. 163–171). ‎Springer.‎

‎[58] ‎ Wang, Z., Guo, S., Chen, G., Zhang, M., Sun, T., & Chen, Y. (2023). Synergistic effects and kinetics in co-‎pyrolysis of waste tire with five agricultural residues using thermogravimetric analysis. Journal of ‎energy resources technology, 145(12), 1336. https://doi.org/10.1115/1.4062826‎

‎[59] ‎ Guo, S., Wang, Z., Chen, G., Zhang, M., Sun, T., & Wang, Q. (2023). Co-pyrolysis characteristics of ‎forestry and agricultural residues and waste plastics: thermal decomposition and products ‎distribution. Process safety and environmental protection, 177, 380–390. ‎https://doi.org/10.1016/j.psep.2023.06.084‎

‎[60] ‎ Irawansyah, H., Amrullah, A., & Alfahri, S. (2023). The effects of distillation temperature and plastic ‎loading on the improvement of waste-derived bio-oil properties. Indonesian physical review, 6(1), 155–‎‎162. https://doi.org/10.29303/ipr.v6i1.200%0A‎

‎[61] ‎ Abnisa, F. (2023). Enhanced liquid fuel production from pyrolysis of plastic waste mixtures using a ‎natural mineral catalyst. Energies, 16(3), 1224. https://doi.org/10.3390/en16031224‎

‎[62] ‎ Tumuluru, J. S. (2023). High-moisture pelleting of corn stover using pilot-and commercial-scale ‎systems: Impact of moisture content, L/D ratio and hammer mill screen size on pellet quality and ‎energy consumption. Biofuels, bioproducts and biorefining, 17(5), 1156–1173. ‎https://doi.org/10.1002/bbb.2519‎

‎[63] ‎ Oyeleke, A. M., Olajumoke, A. O., Rofiyat, A., & Oluwatosin, A. J. (2022). Effect of pyrolysis ‎temperature on chemical and structural properties of raw agricultural wastes. Food science, 6, 69–85. ‎https://www.doi.org/10.52589/AJAFS-YY75RSRK

‎[64] ‎ Mensah, I., Ahiekpor, J. C., Bensah, E. C., Narra, S., Amponsem, B., & Antwi, E. (2022). Recent ‎development of biomass and plastic co-pyrolysis for syngas production. Chemical science international ‎journal, 31(1), 41–59. DOI:10.9734/CSJI/2022/v31i130275‎

‎[65] ‎ Abolpour, B., & Abbaslou, H. (2023). Isothermal gasification kinetics of char from municipal solid ‎waste ingredients using the thermo-gravimetric analysis. Case studies in chemical and environmental ‎engineering, 7, 100298. https://doi.org/10.1016/j.cscee.2023.100298‎

‎[66] ‎ Özçakır, G., & Karaduman, A. (2019). Co-pyrolysis of plastic wastes: effects of temperature and ‎feedstock ratio on chemical composition of liquid product. 16th international conference on environmental ‎science and technology. CEST.‎

‎[67] ‎ Salviılla, J., De Luna, M., & Rollon, A. (2019). Co-pyrolysis of corn stover with plastic: optimization ‎based on synergy. 16th international conference on environmental science and technology. CEST.‎

‎[68] ‎ Gandidi, I. M., Suryadi, E., Mardawati, E., Kendarto, D. R., & Pambudi, N. A. (2022). Two stage co-‎pyrolysis improvement to produce synthetic oil and gas simultaneously from mixed municipal solid ‎waste using natural dolomite-based catalyst. Results in engineering, 16, 100753. ‎https://doi.org/10.1016/j.rineng.2022.100753‎

‎[69] ‎ Ma, H., Bei, J., Zhan, M., Jiao, W., Xu, X., & Li, X. (2021). Experimental study on co-pyrolysis ‎characteristics of household refuse and two industrial solid wastes. Energies, 14(21), 6945. ‎https://doi.org/10.3390/en14216945‎

‎[70] ‎ Yan, Q., Tong, Y., Gao, S., Liu, Z., Wei, P., & Xiong, Z. (2022). Effect of oxygen and temperature on ‎pyrolytic oil production from tobacco stem waste. International conference on sustainable technology and ‎management (ICSTM 2022) (Vol. 12299, pp. 292–299). SPIE.‎

‎[71] ‎ Zhang, Y., Cao, Y., Feng, Y., Zhang, D., & Qin, J. (2023). Investigation into effect of residence time on ‎cooling characteristics of RP-3. Journal of thermophysics and heat transfer, 37(2), 435–447. ‎https://doi.org/10.2514/1.T6556‎

‎[72] ‎ Akresh, I. R., & Massey, D. S. (2023). Duration of residence measurement: i. redstone akresh, d. massey. ‎In Selected topics in migration studies (pp. 205–206). Springer.‎

‎[73] ‎ Sánchez, H. R. (2022). Residence times from molecular dynamics simulations. The journal of physical ‎chemistry b, 126(43), 8804–8812. https://doi.org/10.1021/acs.jpcb.2c03756‎

‎[74] ‎ Zolghadri, S., Rahimpour, H. R., & Rahimpour, M. R. (2023). Co-electrolysis process for syngas ‎production. In Advances in synthesis gas: methods, technologies and applications (pp. 237–260). Elsevier.‎

‎[75] ‎ Sravani, P., Povari, S., Alam, S., Nakka, L., Srinath, S., & Chenna, S. (2023). Co-gasification of waste biomass ‎and plastic for syngas production with co2 capture and utilization: thermodynamic investigation. ‎https://doi.org/10.21203/rs.3.rs-2914605/v1‎

‎[76] ‎ Li, Q., Yang, H., Chen, P., Jiang, W., Chen, F., Yu, X., & Su, G. (2023). Investigation of catalytic co-‎pyrolysis characteristics and synergistic effect of oily sludge and walnut shell. International journal of ‎environmental research and public health, 20(4), 2841. https://doi.org/10.3390/ijerph20042841‎

‎[77] ‎ Saleem, R., Shukrullah, S., & Naz, M. Y. (2022). Use of heterojunction catalysts for improved catalytic ‎pyrolysis of biomass and synthetic wastes. In Energy and environment in the tropics (pp. 169–183). ‎Springer.‎

‎[78] ‎ Udensi, J. U., Anyanwu, C. O., Opara, M. C., Duru, C. C., Onyima, E. C., & Okafor, J. C. (2023). ‎Assessment of solid waste management methods in some selected parts of owerri west, imo state, ‎Nigeria. Archives of current research international, 23(6), 1–10. https://doi.org/10.9734/acri/2023/v23i6575‎

‎[79] ‎ Benjamin, G. O., & Benjamin, E. (2023). Economics and public health implications of solid waste ‎management in Nigeria: a review. Journal of economics, management and trade, 29(6), 45–49. ‎https://doi.org/10.9734/jemt/2023/v29i61098‎

‎[80] ‎ Ezeudu, O. B., Ezeudu, T. S., Ugochukwu, U. C., Tenebe, I. T., Ajogu, A. P., Nwadi, U. V, & Ajaero, C. C. ‎‎(2022). Healthcare waste management in Nigeria: a review. Recycling, 7(6), 87. ‎https://doi.org/10.3390/recycling7060087‎

‎[81] ‎ Owolabi, S. E., Olanrewaju, G. O., Babatunde, A. O., & Ajayi, O. O. (2021). Municipal solid waste ‎management in Nigeria: A review and future directions. Waste management & research, 39(12), 3702–‎‎3716.‎

‎[82] ‎ Ishaq, A., Said, M. I. M., Azman, S., Abdulwahab, M. F., & Alfa, M. I. (2022). Impact, mitigation ‎strategies, and future possibilities of Nigerian municipal solid waste leachate management practices: a ‎review. Nigerian journal of technological development, 19(3), 181–194. https://doi.org/10.4314/njtd.v19i3.1‎

‎[83] ‎ Elegeonye, H. I., Owolabi, A. B., Ohunakin, O. S., Yakub, A. O., Yahaya, A., Same, N. N., … & Huh, J.-S. ‎‎(2023). Techno-economic optimization of mini-grid systems in Nigeria: a case study of a PV--battery--‎Diesel hybrid system. Energies, 16(12), 4645. https://doi.org/10.3390/en16124645‎

‎[84] ‎ Chamarande, T., Hingray, B., & Mathy, S. (2023). Reducing the carbon footprint of mini-grids in africa: ‎the value of solar pv. EGU general assembly conference abstracts (p. 3367). EGU-3367.‎

‎[85] ‎ Babayomi, O. O., Olubayo, B., Denwigwe, I. H., Somefun, T. E., Adedoja, O. S., Somefun, C. T., … & ‎Attah, A. (2023). A review of renewable off-grid mini-grids in Sub-Saharan Africa. Frontiers in energy ‎research, 10, 1089025. https://doi.org/10.3389/fenrg.2022.1089025‎

‎[86] ‎ Hamid, M., & Wesołowski, M. (2023). Waste-to-energy technologies as the future of internal ‎combustion engines. Combustion engines, 193(2), 52–63. https://doi.org/10.19206/CE-161650‎

‎[87] ‎ Mariyam, S., Shahbaz, M., Al-Ansari, T., Mackey, H. R., & McKay, G. (2022). A critical review on co-‎gasification and co-pyrolysis for gas production. Renewable and sustainable energy reviews, 161, 112349. ‎https://doi.org/10.1016/j.rser.2022.112349‎

‎[88] ‎ Cho, S.-H., Cho, E.-B., Lee, J.-H., Moon, D. H., Jung, S., & Kwon, E. E. (2021). Synergistic benefits for ‎hydrogen production through CO 2-cofeeding catalytic pyrolysis of cellulosic biomass waste. ‎Cellulose, 28, 4781–4792. https://doi.org/10.1007/s10570-021-03810-0‎

‎[89] ‎ Schulte, A., Lamb-Scheffler, M., Biessey, P., & Rieger, T. (2023). Prospective LCA of waste electrical and ‎electronic equipment thermo-chemical recycling by pyrolysis. Chemie ingenieur technik, 95(8), 1268–‎‎1281. https://doi.org/10.1002/cite.202300036‎

‎[90] ‎ Ore, O. T., & Adebiyi, F. M. (2023). Thermogravimetric characteristics and pyrolysis kinetics of ‎nigerian oil sands. ACS omega, 8(11), 10111–10118. https://doi.org/10.1021/acsomega.2c07428‎

‎[91] ‎ Dabas, L., & Sanghi, A. (2023). A review on biofuels and chemicals production by co-pyrolysis of solid ‎biomass feedstocks and non-degradable plastics. International journal for multidisciplinary research ‎‎(IJFMR), 5(3), 1–20. https://www.academia.edu/download/104683112/3102.pdf‎

‎[92] ‎ He, X., Zhang, Y., Hong, M., & Li, J. (2022). Optimization model of raw material selection process for ‎complex industry based on improved sequential quadratic programming algorithm. International ‎journal of computational intelligence systems, 15(1), 103. https://doi.org/10.1007/s44196-022-00166-6‎

‎[93] ‎ Barci, M., & Hao, W. (2022). Understanding the need of raw materials, and eco-friendly and cost-‎effective methods for detection and extraction of materials to satisfy semiconductor market and its ‎applications. In Photocatalysts-new perspectives (p. 15). IntechOpen.‎

‎[94] ‎ Kim, M., Cho, S., Han, A., Han, Y., Kwon, J. S. I., Na, J., & Moon, I. (2022). Multi-objective bayesian ‎optimization for design and operating of fluidized bed reactor. In Computer aided chemical engineering ‎‎(Vol. 49, pp. 1297–1302). Elsevier.‎

‎[95] ‎ Varank, G., Ongen, A., Guvenc, S. Y., Ozcan, H. K., Ozbas, E. E., & Can-Güven, E. (2022). Modeling and ‎optimization of syngas production from biomass gasification. International journal of environmental ‎science and technology, 19(4), 3345–3358. https://doi.org/10.1007/s13762-021-03374-3‎

‎[96] ‎ Al Arni, S. (2023). Advanced technology for cleanup of syngas produced from pyrolysis/gasification ‎processes. In Advanced technologies for solid, liquid, and gas waste treatment (pp. 289–304). CRC Press.‎

‎[97] ‎ Bentley, P., Williams, K., & Khodier, A. (2023). How the physio-chemical properties of char from the ‎pyrolysis of Automotive Shredder Residue (ASR) influences its future uses. Pure and applied chemistry, ‎‎95(5), 487–500. https://doi.org/10.1515/pac-2023-0101‎

‎[98] ‎ Ahmad, J., Vakalis, S., Patuzzi, F., & Baratieri, M. (2021). Effect of process conditions on the surface ‎properties of biomass chars produced by means of pyrolysis and CO2 gasification. Energy & ‎environment, 32(8), 1378–1396. https://doi.org/10.1177/0958305X20948237‎

‎[99] ‎ Zhang, S., Yu, S., Li, Q., Mohamed, B. A., Zhang, Y., & Zhou, H. (2022). Insight into the relationship ‎between CO2 gasification characteristics and char structure of biomass. Biomass and bioenergy, 163, ‎‎106537. https://doi.org/10.1016/j.biombioe.2022.106537‎

‎[100] ‎ Semaan, J.-N., Huron, M., & Daouk, E. (2021). Pilot scale pyro-gasification of biomass and waste: char ‎characterization. Biomass conversion and biorefinery, 12, 5751–5765. https://doi.org/10.1007/s13399-020-‎‎01181-3‎

‎[101] ‎ Torres, R., Valdez, B., Beleño, M. T., Coronado, M. A., Stoytcheva, M., García, C., ... & Montero, G. ‎‎(2021). Char production with high-energy value and standardized properties from two types of ‎biomass. Biomass conversion and biorefinery, 13, 4831–4847. https://doi.org/10.1007/s13399-021-01498-7‎

‎[102] ‎ Banu, M. R., Rani, B., Kavya, S. R., & Nihala Jabin, P. P. (2023). Biochar: A black carbon for sustainable ‎agriculture. International journal of environment and climate change, 13(6), 418–432. doi: ‎‎10.9734/IJECC/2023/v13i61840%0D‎

‎[103] ‎ Dhahri, R., Ben Mosbah, M., Khiari, R., Tlili, A., & Moussaoui, Y. (2023). Activated carbon from ‎agricultural waste for the removal of pollutants from aqueous solution. In Annual plant: sources of ‎fibres, nanocellulose and cellulosic derivatives: processing, properties and applications (pp. 465–483). Springer.‎

‎[104] ‎ Coker, E. N., Lujan-Flores, X., Donaldson, B., Yilmaz, N., & Atmanli, A. (2023). An assessment of the ‎conversion of biomass and industrial waste products to activated carbon. Energies, 16(4), 1606. ‎https://doi.org/10.3390/en16041606‎

‎[105] ‎ Wächter, M. R., Ionel, I., Dan, D., & Negrea, A. (2021). Investigation of environmental leaching ‎behavior of an innovative method for landfilling of waste incineration air pollution control residues. ‎Energies, 14(4), 1025. https://doi.org/10.3390/en14041025‎

‎[106] ‎ Fiedor, J., Grycová, B., Blahůškova, V., Leštinský, P., Velička, M., & Ovčačíková, H. (2023). Waste ‎incineration products stabilizing concerning legislative requirements in landfill leakage lisks ‎assessments. AIP conference proceedings (Vol. 2672, No. 1). AIP Publishing.‎

‎[107] ‎ Lau, J., Biscontin, G., & Berti, D. (2023). Effects of biochar on cement-stabilised peat soil. Proceedings of ‎the institution of civil engineers-ground improvement, 176(2), 76–87. https://doi.org/10.1680/jgrim.19.00013‎

‎[108] ‎ Tejada-Tovar, C., Villabona-Ortíz, A., & González-Delgado, Á. (2022). Cement-based ‎solidification/stabilization as a pathway for encapsulating palm oil residual biomass post heavy metal ‎adsorption. Materials, 15(15), 5226. https://doi.org/10.3390/ma15155226‎

‎[109] ‎ Pandey, A., Naik, S., Sinha, S., & Prasad, B. (2023). Preliminary study of agricultural waste as biochar ‎incorporated into cementitious materials. Journal of architectural environment & structural engineering ‎research, 6(2), 59–79.‎

‎[110] ‎ Aworunse, O. S., Olorunsola, H. A., Ahuekwe, E. F., & Obembe, O. O. (2023). Towards a sustainable ‎bioeconomy in a post-oil era Nigeria. Resources, environment and sustainability, 11, 100094. ‎https://doi.org/10.1016/j.resenv.2022.100094‎

‎[111] ‎ Mong, O. O., Obi, O. E., Onyeocha, C. E., Ndubuisi, C. O., Gaven, D. V, & Nnadiegbulam, V. (2023). An ‎experimental study on biomass fuel briquettes’ quality as a product of waste conversion in Nekede, ‎Owerri, Nigeria. Journal of energy research and reviews, 14(4), 22–31. ‎https://doi.org/10.9734/jenrr/2023/v14i4290‎

‎[112] ‎ Adamu, H. A., Samuel, B. O., Joseph, A., Okon, S. S., & Kirim, I. I. (2023). Production and optimization ‎of the refractory properties of blended Nigerian clay for high-temperature application; a non-‎stochastic optimization approach. Functional composites and structures, 5(2), 25001. DOI:10.1088/2631-‎‎6331/acc9fb‎

‎[113] ‎ Ajaero, C. C., Okafor, C. C., Otunomo, F. A., Nduji, N. N., & Adedapo, J. A. (2023). Energy production ‎potential of organic fraction of municipal solid waste (OFMSW) and its implications for Nigeria. Clean ‎technologies and recycling, 3(1), 44–65. DOI:10.3934/ctr.2023003‎

‎[114] ‎ Neminebor, M. P., Umar, U. A., & Oyedeji, A. N. (2022). Feasibility studies for a biogas powered ‎standalone power plant: a case study of giwa community, Kaduna State, Nigeria. Nigerian journal of ‎tropical engineering, 16(1), 127–138. DOI:10.59081/njet.16.1.011‎

‎[115] ‎ Wilson, E. F., Taiwo, A. J., Chineme, O. M., Temitope, A. Y., Chukwuka, E. F., Olufemi, A. M., … & ‎Adesanya, Z. (2022). A review on the use of natural gas purification processes to enhance natural gas ‎utilization. International journal oil, gas coal engeering, 11, 17–27. DOI: 10.11648/j.ogce.20231101.13‎

‎[116] ‎ de Almeida, F. N. C., Igarashi, A. R., Fiewski, A. C., Moreira, W. M., Maia, D. C. S., Arroyo, P. A., & ‎Pereira, N. C. (2023). Evaluation of the performance and feasibility of a pseudo-catalytic solution in ‎the biogas purification process. Process safety and environmental protection, 174, 1003–1015. ‎https://doi.org/10.1016/j.psep.2023.05.002‎

‎[117] ‎ Agbo, S. C., Odewole, O. A., Ojo, F. K., Alum, O. L., Akpomie, K. G., Ofomatah, A. C., …& Onu, C. C. ‎‎(2023). Development of refractories for the pyro-processing (heat-based) industry in nigeria through ‎the evaluation of mixtures of enugu iva-pottery clay, nsu-clay and palm kernel shell waste. IOP ‎conference series: earth and environmental science (Vol. 1178, p. 12019). IOP Publishing.‎

‎[118] ‎ Thapa, K., Vermeulen, W. J. V, Deutz, P., & Olayide, O. (2023). Ultimate producer responsibility for e-‎waste management--A proposal for just transition in the circular economy based on the case of used ‎European electronic equipment exported to Nigeria. Business strategy & development, 6(1), 33–52. ‎https://doi.org/10.1002/bsd2.222‎

‎[119] ‎ Abdullahi, S. M., Abdullahi, A., Enewo, S. J., Ashiru, A. T., Ugochi, E. A., & Makun, A. I. (2022). ‎Production of Sustainable Renewable Energy from Biodegradable Wastes. International journal of ‎engineering and modern technology (IJEMT), 8(3), 52–63.‎

Published

2024-08-25

Issue

Section

Articles

How to Cite

Optimization of Co-pyrolysis Process for Sustainable Distributed Power and Industrial Development in Nigeria: A Pathway Analysis. (2024). Optimality, 1(1), 82-99. https://doi.org/10.22105/opt.v1i1

Similar Articles

You may also start an advanced similarity search for this article.