
        Corresponding Author: wilson.loyola2@gmail.com 

        https://doi.org/10.22105/opt.v2i4.95 

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

1|Introduction    

The central aim of spectral theory is to "classify" all linear operators, a task that naturally directs its focus 

toward Hilbert spaces. This restriction arises because the general framework for Banach spaces, while 

inclusive, remains poorly understood in many respects even today. The clarity and depth achievable in Hilbert 

spaces are not only theoretically appealing but also practically significant. Most pivotal applications of spectral 

theory tend to reside within this more structured and accessible context. At first glance, this alignment with 

Hilbert spaces might appear to be a fortunate coincidence. However, more profound reflection reveals a 

deeper reason: Hilbert spaces are intricately connected to the Euclidean plane and spatial geometry. Unlike 

Banach spaces, which may diverge significantly from geometric intuitions, Hilbert spaces retain a natural 
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  affinity for the geometric principles that underpin much of our understanding of the physical world. Since 

Euclidean geometry serves as an accurate description of the universe across many scales, it is hardly surprising 

that infinite-dimensional mathematical constructs, when applied to real-world problems, align closely with 

the geometric intuition embodied by Hilbert spaces. 

 Functional analysis equips us with tools to rigorously analyze and classify linear operators, while also 

providing a pathway to generalize finite-dimensional results to the infinite-dimensional setting. In some 

instances, a firm grasp of integration theory on general measure spaces becomes indispensable. This 

requirement stems from the need to work with spaces and operators that arise in various applied and 

theoretical contexts, particularly those involving measures and function spaces. Integration theory provides 

the mathematical foundation for dealing with such operators, ensuring the necessary rigor and precision. This 

work begins by revisiting and condensing the essential knowledge required for further exploration. We start 

with a review of the general spectrum of Banach algebras, a fundamental concept that bridges the study of 

algebraic and topological properties of operators. The spectrum provides critical insights into operator 

behavior, enabling us to classify and analyze them within a broader framework. Next, we delve into the 

fundamentals of compact operators on Hilbert spaces. Compact operators play a vital role in spectral theory, 

offering a rich structure and numerous applications. Their properties, such as the discreteness of the spectrum 

and the accumulation points of eigenvalues, make them particularly interesting for both theoretical and 

practical purposes. Before proceeding with the detailed discussion, some preliminary notation and 

conventions are introduced to ensure clarity and consistency. These foundational elements provide the basis 

for a systematic, structured approach to subsequent analysis. 

The data set used in this work was introduced and applied in ANN by [1] and [2]. The Intuitionistic fuzzy 

domain was used in ANN-based robotics by [3], and time series forecasting using an IFS-based ANN was 

performed in [4]. An intuitionistic fuzzy neural network with a Gaussian membership function was proposed 

by [5], and a fully linguistic intuitionistic fuzzy ANN was proposed by [6], and an IFS evaluation of ANN was 

put forth in [7]. In [8], various learning rules for IFS ANNs were applied, and many comparisons with classical 

methods were made. The authors in [9] proposed a Gram-Schmidt Orthogonalized ANN in which the input 

vector to the ANN was an IFS matrix, the entries were orthogonalized, and the results were compared with 

those of existing methods. In this paper, the numerical illustration in [9] will be used for computations, and 

our proposed techniques will be compared with those in [9]. Medical applications of machine learning 

methods were proposed in [10], and a multi-criteria-based method was proposed in [11]. In [12–14], deep 

neural networks and complex neural systems were discussed, which are recent areas of interest for researchers. 

In this paper, the balancing (weight) vector provided by the decision makers will be used to solve MAGDM 

problems, and the same numerical illustration will be solved using some ANN techniques. Understanding the 

differences among the proposed techniques in this work will enable decision-makers to select the best ANN 

approach for the given situation, taking into account factors such as accuracy, computational efficiency, and 

interpretability of results. By adding this viewpoint, the comparative analysis is enhanced, and the 

methodological variation in using ANNs to solve decision-making problems is highlighted. 

2|Spectrum of an Operator on a Finite-Dimensional Hilbert Space  

We will define the analogues of operators and their eigenvectors, since we apply matrix eigenvalue theory to 

operators on a Hilbert space. 

Definition 1. Let T be an operator on space H, which is Hilbert. If there is a non-zero vector x in H such 

that Tx=λx, then a scalar λ is an eigenvalue (also known as a characteristic value or spectral value) of T. 

Definition 2. Any non-zero vector x in H that Tx=λx is referred to as an eigen vector (also known as 

characteristic vector or spectral vector) of T if λ is an eigenvalue of T. 

Note:  The entire theory becomes trivial if there are no non-zero vectors in the Hilbert space, which means 

that T cannot have any eigen vectors. Thus, we will assume H≠{0} throughout the task. The following 

property is derived from the definition of eigenvalues and eigenvectors. Let λ be an operator T's eigenvalue 
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  on Hilbert space H. Mλ is a non-zero closed linear subspace of H that is invariant under T if it is the set of all 

eigenvectors of T that correspond to the eigenvalue λ and the zero vector 0. Based on the known properties 

of Mλ,: Mλ = {x ∈ H ∶ Tx = λ x} = {x ∈ H ∶ (T − λI)x = 0}. Also, Mλ is the null space of the continuous 

transformation T − λI, because T and I are continuous. Hereby Mλ should be closed. Next, i x ∈ Mλ,  f then 

 Tx ∈ Mλ and hence we should have Tx = λx. As we know that Mλ is a linear subspace of H, x ∈ Mλ which 

leads to the result λx = Tx ∈ Mλ. Altogether, it is now interesting to see that Mλ is invariant under T.                                                                                                                                                                             

Definition 3. The eigen space of T that corresponds to the eigenvalue λ is the closed subspace Mλ.  

Every eigenspace of T is a non-zero closed Linear subspace of H that is invariant under T. 

Note:  In general, an operator on a Hilbert space H need not necessarily have an eigenvalue, as will be 

discussed in the following illustration. 

Example 1. Consider the Hilbert space on 𝑙2 defined by T(x1, x2, … , xn) = {0, x1, x2, … }. Suppose λ being an 

eigenvalue of T, then there exists a non-zero vector (x1, x2, … , xn) such that Tx = λx, which provides  

(0, x1, x2, … ) = (λx1, λx2, … , λxn) which in turn implies that  x1 = 0, λx2 = x1, λxn = xn−1… By hypothesis, x =

(xn) ∈ l2 cannot be a zero vector, so that xn ≠ 0 for any n. Hence λx1 = 0 implies λ=0 and λx2 = x1 implies 

𝑥1 = 0 contradicting 𝑥 is a non-zero vector. Hence, it is clear that T must not have any eigenvalues. 

Definition 4. The spectrum of T, represented by σ(T), is the collection of all of T's eigenvalues. 

The non-emptiness of the spectrum of an operator on a finite-dimensional Hilbert space H is established by 

the following theorem. 

Theorem 1. The spectrum of T, or σ(T), is a finite subset of the complex plane if T is an arbitrary operator 

on a finite-dimensional Hilbert space H. Additionally, the number of points in σ(T) does not exceed the 

dimension n of H. 

Lemma 1. If and only if there is a non-zero vector x in a finite-dimensional Hilbert space H such that Tx=0, 

then the operator T on H is singular. 

Note:  A complex scalar linked with H has at least one point in σ(T). It can have up to n points, but no more 

than n. If a scalar field is real, then σ(T) might be empty. To obtain a richer theory, we typically use the 

complex scalar in spectral theory.  

The following theorem gives some elementary properties of σ(T). 

Theorem 2. Suppose T is an operator function on a finite-dimensional Hilbert space, and the preceding 

statements hold: 

I. T is singular iff 0 ∈ σ(T). 

II. Suppose T is non-singular, then λ ∈ σ(T) iff λ−1 ∈ σ(T−1). 

III. Suppose A is non-singular, then σ(ATA−1) = σ(T). 

IV. Suppose λ ∈ σ(T), and if P is a polynomial, then it can be proved that P(λ) ∈ σ(P(T)). 

Next, the spectrum of operators can be expressed as functions of T. 

Theorem 3. (Spectral mapping theorem (polynomials)) Suppose T is an operator on a complex Banach space 

B, and if p is a polynomial, then it can be proved that  σ(p(T)) = p(σ(T) = {p(λ): λ ∈ σ(T)}. 

Example 2.  Consider the Spectrum of the idempotent operator function T on a Banach space. 

By the property of idempotency, T2 = T or T2 − T = 0. Let p(T) = T2 − T. 

Then p(T) = 0 by hypothesis. Hence p(σ2(T) = σ2T − σ(T) = σ(T)(σ(T) − 1) = 0 so that σ(T) = 1 or 

σ(T) = 0. Hence σ(T) = {0,1}. 
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  3|Decision Maker Weight Determining Methods with Real Eigen 

Values 

 MAGDM problem-solving involves the effective involvement of the decision maker, who is responsible for 

providing consensus for the process. At one end, the decision maker's weight vector plays a crucial role, and 

in situations where the problem-solving techniques depend solely on it, a proper method to elicit it from the 

decision maker becomes crucial at the other end. In this paper, and in particular when dealing with a decision 

maker who provides weights in the form of linear space problems, we need means and methods to process 

this information and retrieve the weights in a proper sense that appropriately suits the decision problem 

involved. Here is a model of eliciting a weight vector from the decision maker. 

Step 1.  Let H be a Hilbert space and Ti be a linear operator function on H and ei1, ei2, . . . , ein is the basis for 

H. Let Ti(ei1), Ti(ei2), . . . , Ti(ein) be values in H. Let e11, e12, … , e1n basis for H, where A1 =

(T1(e11)    T1(e12) …T1(e1n))
T. Let e21, e22, … , e2n be another basis for H, where A2 =

(T1(e21)    T1(e22)…T1(e2n))
T. Similarly, we can find An, where An = (T1(en1)    T1(en2)…T1(enn))

T. 

Step 2. Let λi = (λi1, λi2, … , λin) be the real eigenvalues for a matrix Ai, where the eigenvalues are in the 

spectrum of the space, and form the matrix  Bj = (λ1 λ2 … λn). 

Step 3. Find Bj ∗ Bj
T  and then normalize the matrix to elicit the weights w1, w2, … , wn such that ∑ wi

n
i=1 = 1. 

Problem proposed by decision maker-1 

Let us suppose that decision maker-1 provides the balancing (weight) information in the form of the following 

linear space problem, which needs to be unlocked by the stakeholder.   

Step 1. Let T1be a linear operator function on Hilbert space ℜ3. Let β1 = {e1 = (1,0,0), e2 = (0,1,0), e3 =

(0,0,1)} be a basis set. Let T1 be defined by, T1(e1) = (x1, x1 − y1, z1) = (1,1,0); T1(e2) = (x2, 2y2, z2) =

(0,2,0);  T1(e3) = (x3, −z3, 4z3) = (0, −1,4). The corresponding matrix A1 is, A1 = (
1 1 0
0 2 0
0 −1 4

), and 

eigenvalues are λ1 = {1,2,4}. Let T2 be defined by, T2(e1) = (x1, x1 + y1, z1) = (1,1,0); T2(e2) = (x2, y2, z2) =

(0,2,0); T2(e3) = (x3, −z3, 2z3) = (0, −1,2). The corresponding matrix A2 is, A2 = (
1 1 0
0 2 0
0 −1 2

), and 

eigenvalues are λ2 = {1,2,2}. Let T3 be defined by,  T3(e1) = (z1, y1, 2x1) = (0,0,2); T3(e2) = (−3y2 +

x2, y2, 6y2 + z2) = (−3,1,6); T3(e3) = (x3, y3, z3) = (0,0,1). 

The corresponding matrix A3 is,  A3 = (
0 0 2
−3 1 6
0 0 1

), and eigenvalues are λ3 = {0,1,1}. 

Step 2. The matrix B1 is,  B1 = (λ1 λ2 λ3), where B1 = (
1 1 0
2 2 1
4 2 1

). 

Step 3. Finding B1 ∗ B1
T, we have the following computation: B1 ∗ B1

T = (
2 4 6
4 9 13
6 13 21

). 

Normalizing Bj ∗ Bj
T, we get the weight vector of Decision Maker-1 as: 

Problem proposed by Decision maker-2: Suppose the decision maker-2 proposes balancing (weight) 

information that the stakeholder must unlock.   

Step 1. Let T4 be a linear operator function on Hilbert space ℜ3 and let β2 = {b1 = (4,2,0), b2 = (2,1,5), b3 =

(1,0,0)} be a basis set. The operator T4 is defined by, T4(b1) = (z1,
y1

2
,
x1

2
) = (0,1,2); T4(b2) =

γ = (0.156837,0.334829,0.508333).  
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  (−2x2, y2,

x2+y2+z2

2
) = (−4,1,4); T4(b3) = (−5x3, x3, 7x3 + z3) = (−5,1,7). The corresponding eigenvalues 

are λ4 = {1,2,5}. Let the operator T5 is defined by, T5(b1) = (x1,
y1

2
, x1 + y1) = (4,1,6); T5(b2) =

(z2 − 2x2 − y2, x2, z2 − x2) = (0,2,3); T5(b3) = (z3, y3, 9x3) = (0,0,9). The corresponding eigenvalues are 

λ5 = {2,4,9}. Let the operator T6 be defined by,  T6(b1) = (z1,
y1

2
,
x1

4
) = (0,1,1); T6(b2) = (−y2, x2, z2 − 2x2) =

(−1,2,1);T6(b3) = (−x3, −x3, 4x3) = (−1,−1,4). The corresponding eigenvalues are λ6 = {1,2,3}. 

Step 2. The matrix B2 is formed as:  B2 = (λ4 λ5 λ6),  where  B2 = (
1 2 1
2 4 2
5 9 3

). 

Step 3. Finding B2 ∗ B2
T, we have the following computation: B2 ∗ B2

T = (
6 12 26
12 24 152
26 52 115

). 

Normalizing Bj ∗ Bj
T, we get the weight vector of decision maker-2 as: 

Problem proposed by decision maker-3  

Let us suppose that decision maker-3 proposes balancing (weight) information, which the stakeholder must 

unlock.   

Step 1. Let T7 be a linear operator function on Hilbert space ℜ4 and β3 = {c1 = (1,0,0,0), c2 = (0,1,0,0), c3 =

(0,0,1,0), c4 = (0,0,0,1)} be the basis. The operator T7 defined by, T7(c1) = (2x1, x1, x1, r1) =

(2,1,1,0);  T7(c2) = (y2, y2, z2, y2 + x2) = (1,2,0,1); T7(c3) = (z3, x3, 2z3, z3) = (1,0,2,1); T7(c4) =

(z3, r4, r4, 2r4) = (0,1,1,2). The corresponding eigenvalues are λ7 = {4,2,0,2}. Let the operator T8 be defined 

by,T8(c1) = (x1, 4x1, y1, r1) = (1,4,0,0); T8(c2) = (x2, y2, z2, r2) = (0,2,0,0);T8(c3) = (5z3, 3z3, z3 + x3, z3) =

(5,3,1,1); T8(c4) = (4r4, 7r4, 2r4, 2r4) = (4,7,2,2). The corresponding eigenvalues are λ8 = {0,1,2,3}. Let the 

operator T9 be defined by, T9(c1) = (2x1, x1, 3x1, 4x1 + r1) = (2,1,3,4); T9(c2) = (x2, 2y2, y2, 3y2) = (0,2,1,3); 

T9(c3) = (2z3, z3, 6z3 + x3, 5z3) = (2,1,6,5); T9(c4) = (r4, 2r4, 4r4, 8r4) = (1,2,4,8). The corresponding 

eigenvalues are λ9 = {13.0990,1,2.9010,1}. Let the operator T10 be defined by, T10(c1) =

(4x1, −x1, −x1, −x1 + r1) = (4,−1,−1,−1); T10(c2) = (−y2, 4y2, −y2, −y2) = (−1,4, −1,−1); T10(c3) =

(−z3, −z3, 4z3, −z3) = (−1,−1,4, −1); T10(c4) = (−r4, −r4, −r4, 4r4) = (−1,−1,−1,4). The corresponding 

eigenvalues are λ10 = {1,5,5,5}. 

Step 2. The matrix B3 is formed as: B3 = (λ7 λ8 λ9 λ10), and hence 

Step 3. Finding B3 ∗ B3
T and normalizing B3 ∗ B3

T, we get the weight vector of Decision Maker-3 as: ω =

(0.343122,0.191853,0.226570,0.238453). 

 Now, as we have elicited the weighting vectors from the 1st, 2nd and 3rd decision makers, γ =

(0.156837,0.334829,0.508333), w = (0.135814,0.271628,0.592557)  

 and ω = (0.343122,0.191853,0.226570,0.238453) respectively, we can make use of these vectors in the 

aggregation computation of the decision matrices of the given MAGDM problem to select the best 

alternatives. 

w = (0.135814,0.271628,0.592557).  

B3 = (

4 0 13.0990 1
2 1 1 5
0 2 2.9010 5
2 3 1 5

).  
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  4|Decision Maker Weight Determining Methods with Complex 

Eigen Values 

In the previous case, we used real eigenvalues to determine decision-maker weights; in this section, we 

consider complex eigenvalues for determining the decision-maker weight vector.  

Step 1. Let H be a Hilbert space and Ti be a linear operator function on H and ei1, ei2, . . . , einis the basis for 

H. Let Ti(ei1), Ti(ei2), . . . , Ti(ein) be values in H. Let e11, e12, … , e1n basis for H, where A1 =

(T1(e11)    T1(e12) …T1(e1n))
T. Let e21, e22, … , e2n be another basis for H, where A2 =

(T1(e21)    T1(e22)…T1(e2n))
T. Similarly, we can find An, where An = (T1(en1)    T1(en2)…T1(enn))

T. 

Step 2. Let λi = (λi1, λi2, … , λin) be the complex eigenvalues for a matrix Ai, where the eigenvalues are in the 

spectrum of the space, and form the matrix  λin = a + ib, |λin| = √a2 + b2, Bj = (|λ1| |λ2| . . . . |λn|). 

Step 3. Find Bj ∗ Bj
T  and then normalize the matrix to elicit the weights w1, w2, … , wn such that ∑ wi

n
i=1 = 1. 

Problem proposed by decision maker-1 

Step1. Let T1 be a linear operator function on Hilbert space ℜ3, and β1 = {e1 = (1,0,0), e2 = (1,1,0), e3 =

(1,1,1)} be a basis set. Let T1 be defined by, T1(e1) = (7x1, 3x1 + y1, 8x1 + z1) = (7,3,8); T1(e2) = (11x2, 9y2, 2x2 +

3y2) = (11,9,5);T1(e3) = (6x3, 8y3, 4z3) = (6,8,4). The corresponding eigenvalues are λ1 =

{20.1981, −0.0990 + i3.1609, −0.0990 − i3.1609}. Let T2 be defined by,  T2(e1) = (4x1, −2x1, 3x1 + z1) =

(4, −2,3); T2(e2) = (8x2, −3y2, 2x2 + 3y2) = (8, −3,5); T2(e3) = (7x3, −2z3, 4z3) = (7, −2,4).  

The corresponding eigenvalues are λ2 = {−0.2854 + i0.3132, −0.2854 + i0.3132,5.5708}. Let T3 be defined 

by, T3(e1) = (x1, 2x1, 2x1) = (1,2,2);  T3(e2) = (2x2, 3y2, 3y2 + 2x2) = (2,3,5); T3(e3) = (3x3, 2y3, 3z3) =

(3,2,3). 

The corresponding eigenvalues are  λ3 = {−0.3803 + i0.8703,7.7605, −0.3803 − i0.8703}. 

Step2. The matrix B1 is formed as follows: 

λ1 = {20.1981,−0.0990 + i3.1609,−0.0990 − i3.1609}, 

λ11 = 20.1981 ⇒ |λ11| = √a
2 + b2 = √(20.1981)2 + 02 = 20.1981, 

λ12 = −0.0990 + i3.1609 ⇒ |λ12| = √(−0.0990)
2 + (3.1609)2 = 3.1624, 

λ13 = −0.0990 − i3.1609 ⇒ |λ13| = √(−0.0990)
2 + (−3.1609)2 = 3.1624, 

λ2 = {−0.2854 + i0.3132,−0.2854 + i0.3132,5.5708}, 

λ21 = −0.2854 + i0.3132 ⇒ |λ21| = √(−0.2854)
2 + (0.3132)2 = 0.4237, 

λ22 = −0.2854 − i0.3132 ⇒ |λ22| = √(−0.2854)
2 + (−0.3132)2 = 0.4237, 

λ23 = 5.5708 ⇒ |λ23| = √a
2 + b2 = √(5.5708)2 + 02 = 5.5708, 

λ3 = {−0.3803 + i0.8703,7.7605,−0.3803 − i0.8703}, 

λ31 = −0.3803 + i0.8703 ⇒ |λ21| = √a
2 + b2 = √(−0.3803)2 + (0.8703)2 =

0.9497,  

λ32 = 7.7605 ⇒ |λ32| = √(7.7605)
2 + 02 = 7.7605, 

λ33 = −0.3803 + i0.8703 ⇒ |λ21| = √a
2 + b2 = √(−0.3803)2 + (0.8703)2 =

0.9497.  
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Now the matrix B1 is: B1 = (|λ1| |λ2| |λ3|), where B1 = (
20.1981 0.4237 0.9497
3.1624 0.4237 7.7605
3.1624 5.5708 0.9497

). 

Step3. Finding B1 ∗ B1
T, we have the following computation: 

Normalizing Bj ∗ Bj
T, we get the matrix as:  (B1 ∗ B1

T)N = (
0.7470 0.4421 0.5212
0.1304 0.4358 0.1532
0.1226 0.1221 0.3256

), where N represents 

the normalized matrix. Further, taking the average of the entries, we get the weights as w =

{0.5701,0.2398,0.1901}. 

Problem proposed by decision maker-2 

Let T4 be a linear operator function on Hilbert space ℜ3 and β2 = {b1 = (4,2,0), b2 = (6,3,5), b3 = (7,3,5)} is 

a basis set. The operator T4 be defined by,  T4(b1) = (
x1

4
,
y1

2
,
x1+y1

6
) = (1,3,1); T4(b2) = (−

x2

6
, y2 − 1,

z3

5
) =

(−1,2, −1); T4(b3) = (x3 − 5,2y3, 7x3 + 5y3 − 3z3) = (2,6,0). The collection of eigenvalues is λ4 =

{−0.8232,1.9116 + i2.9143,1.9116 − i2.9143}. The operator T5 defined by,  T5(b1) = (y1, x1, x1 + z1) =

(2,4,4); T5(b2) = (
z2

5
,
x2

3
, y2) = (1,2,3); T5(b3) = (−y3,

y3+z3

−2
, −z3) = (−3,−4,−5). The collection of 

eigenvalues is   λ5 = {+2i, −2i, −1}. The operator T6defined by,  T6(b1) = (3x1 + 1,−3x1, 4y1) = (13, −12,7); 

T6(b2) = (y2 + 1,−z2, x2) = (4, −5,6); T6(b3) = (−y3, −z3 − 1,−x3 − 1) = (−3,−6,−8). The collection of 

eigenvalues is λ6 = {−3.5883 + i7.8240, −0.8233, −3.5883 − i7.8240}. Following similar computations as 

for decision maker-1, we get the weights as γ = (0.3828,0.1727,0.4445). 

Problem proposed by decision maker-3   

Let T7 be a linear operator on Hilbert space ℜ4 and β3 = {c1 = (1,0,0,0), c2 = (1,1,0,0), c3 =

(1,1,1,0), c4 = (1,1,1,1)} be a basis set. The operator T7 defined by, T7(c1) = (x1, 2x1, −x1, r1) = (1,2, −1,0); 

T7(c2) = (z2, 5x2, 3y2, r2) = (0,5,3,0); T7(c3) = (−2x3, r3, x3 − y3, 4z3) = (−2,0,0,4); T7(c4) = (x4 −

z4, 6y4, −4z4, −3r4) = (0,6, −4, −3). The operator T8 defined by, T8(c1) = (9x1, 13x1, 5x1, 2x1) = (9,13,5,2); 

T8(c2) = (x2 , 11y2, 4x2 + 3y2, 3x2 + 3y2) = (1,11,7,6); (c3) = (3x3, 7y3, 4z3, y3) = (3,7,4,1);  T8(c4) = (6x4, y4 −

z4, 7z4, 10r4) = (6,0,7,10). The operator T9 defined by,  T9(c1) = (x1, 4x1 + y1, 2x1 + z1, 3x1 + r1) = (1,4,2,3); 

T9(c2) = (x2y2, y2, 4x2, 4y2) = (0,1,4,4); T9(c3) = (−x3, y3 − z3, z3, r3) = (−1,0,4,1); T9(c4) = (2x4, z4 −

r4, 4z4, r4) = (2,0,4,1). Following similar computations, we get the weights as: 

Similar to the computations with real eigen values, as we have elicited the weighting vectors from the total 

decision makers involved in the problem, from the first w = (0.5701,0.2398,0.1901), from the second γ =

(0.3828,0.1727,0.4445) and from the third decision maker ω = (0.2853,0.2133,0.38225,0.119175), we can 

make use of these vectors in the aggregation computation of the decision matrices of the given MAGDM 

problem to select the best alternatives. 

5|Algorithm for the Classical Decision-Making Method 

Step 1. Compress or reduce the number of columns of all matrices, keeping the number of matrices 

unchanged, using the IFWAA aggregation operator and the balancing vector (weight) provided by the 

decision maker. 

Step 2.  Compress or reduce the number of matrices into a single matrix with a single column using the IFHA 

aggregation operator and the balancing vector (weight) provided by the decision maker. 

B1 ∗ B1
T = (

409.0447 71.4241 67.1367
71.4241 70.4057 19.7313
67.1367 19.7313 41.9365

).  

ω = (0.2853,0.2133,0.38225,0.119175).  
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  Step 3.  In this step, the correlations are computed between the final mi′s, and the ideal IFS value, where 

m̃i = (0,1).  The correlation of G, H ∈ IFSs(X) is given by a formula CrZL(G, H) =
1

n
∑ [uG(xi)uH(xi) +
n
i=1

γG(xi)γH(xi) + πG(xi)πH(xi)].  

Step 4. Here, the correlation coefficient is displayed for the selection of the best option:   ρrZL(m1, m̃i),

where ρrZL(G, H) =
CrZL(G,H)

√CrZL(G,G)CrZL(H,H)
. 

Step 5. Arranging the options based on the computed ρrZL(G, H), we can obtain the most preferred choice 

based on the highest relationship between the variables. 

6|Numerical Illustration: MAGDM with Weights Derived From 

Linear Space Methods with Real and Complex Eigen Values 

 Consider the numerical illustration in [9] of the Risk Investment company, with five investment options 

based on criteria that must be evaluated against the alternatives. The balancing vectors (weights) are w =

(0.156837,0.334829,0.508333), γ = (0.135814,0.271628,0.592557) and ω =

(0.343122,0.191853,0.226570,0.238453), which are evaluated from the process of the information given by 

the decision makers and derived from the real eigenvalues. The decision matrices provided by the decision 

makers are: 

Step 1. The IFWAA operator compresses the columns and reduces each matrix to a single column. 

r1
(1) = (0.4217,0.4742). Similarly, all the other values can be computed. 

R1 =

(

 
 

(0.5, 0.4) (0.6, 0.3)
(0.7, 0.3) (0.7, 0.2)
(0.6, 0.4) (0.5, 0.4)
(0.8, 0.1) (0.6, 0.3)
(0.6, 0.2) (0.4, 0.3)

 

(0.3, 0.6) (0.2, 0.7)
(0.7, 0.2) (0.4, 0.5)
(0.5, 0.3) (0.2, 0.3)
(0.3, 0.4) (0.2, 0.6)
(0.7, 0.1) (0.1, 0.3))

 
 

, 

R2 =

(

 
 

(0.4, 0.3) (0.5, 0.2)
(0.6, 0.2) (0.6, 0.1)
( 0.5, 0.3) (0.4, 0.3)
(0.7, 0.1) (0.5, 0.2)
(0.5, 0.1) (0.3, 0.2)

 

(0.2, 0.5) (0.1, 0.6)
(0.6, 0.1) (0.3, 0.4)
(0.4, 0.2) (0.5, 0.2)
(0.2, 0.3) (0.1, 0.5)
(0.6, 0.2) (0.4, 0.2))

 
 

, 

R3 =

(

 
 

(0.4, 0.5) (0.5, 0.4)
(0.6, 0.4) (0.6, 0.3)
(0.5, 0.5) (0.4, 0.5)
(0.7, 0.2) (0.5, 0.4)
(0.5, 0.3) (0.3, 0.4)

 

(0.2, 0.7) (0.1, 0.8)
(0.6, 0.3) (0.3, 0.6)
(0.4, 0.4) (0.5, 0.4)
(0.2, 0.5) (0.1, 0.7)
(0.6, 0.2) (0.4, 0.4))

 
 

. 

 

IFWAA(a1̃,  a2̃, … , añ ) = ∑ aj̃ωj
n
j=1  = (  1 − ∏ (1 − μaj  )

ωjn
j=1  ,  ∏ ( γaj)

ωjn
j=1    ). 

r̃1
(1) = (1 − [(1 − µa1)

ω1  (1 − µa2)
ω2  (1 − µa3)

ω3
(1 −

µa4)
ω4
], (γa1)

ω1
(γa2)

ω2
(γa3)

ω3  (γa4)
ω4).  

r1
(1) = ((1 − [

(1 − 0.5)0.343122 ∗ (1 − 0.6)0.191853 ∗

(1 − 0.3)0.226570 ∗ (1 − 0.2)0.238453
]) , (

(0.4)0.343122 ∗ (0.3)0.191853 ∗

(0.6)0.226570 ∗ (0.7)0.238453
)). 

 

r2
(1) = (0.6461,0.2860); r3

(1) = (0.4819,0.3499); r4
(1) = (0.5777,0.2591), 

r5
(1) = (0.5085,0.2035); r1

(2) = (0.3180,0.3676); r2
(2) = (0.5429,0.1765), 
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Step 2. The IFHA operator compresses the three matrices into a single final matrix, ready for decision-

making. Then for r1
(1) = (0.4217,0.4742); r1

(2) = (0.3180,0.3676);  r1
(3) = (0.3188,0.5783), where w =

(0.156837,0.334829,0.508333) and γT = (0.592557,0.271628,0.135814), we have the computations as 

follows: 

Utilizing the IFHA operator, we get, 

m1 = (0.5538,0.5598). Similarly, we can compute all other values, and hence, m1 = (0.5538,0.5598); m2 =

(0.7275,0.3699); m3 = (0.6282,0.4406);m4 = (0.6734,0.3792); m5 = (0.6437,0.3133). 

Step 3.   In this step, the correlations are computed between the final mi′s, and the ideal IFS value m̃i = (0,1). 

CrZL(m1, m̃i) = 0.5598; CrZL(m2, m̃i) = 0.1850; CrZL(m3, m̃i) = 0.1469; CrZL(m4, m̃i) = 0.0948; 

CrZL(m5, m̃i) = 0.0627. 

Step 4.  Now, the correlation coefficient is displayed for the selection of the best option:   ρrZL(m1, m̃i) =

0.7036;  ρrZL(m2, m̃i) = 0.3183;  ρrZL(m3, m̃i) = 0.3303;   ρrZL(m4, m̃i) = 0.2448;  ρrZL(r5, r̃5) = 0.1955. 

Step 5.  Arranging the options based on the computed ρrZL(mi, m̃i), we can observe that A1 is the most 

preferred choice. 

 Proceeding with the same algorithm, but utilizing the weight vectors from complex eigenvalues, the ranking 

of all the alternatives using the correlations obtained, it is easy to note that even here, A1 is the preferred 

choice of the available options, with a high correlation. 

7|Artificial Neural Network-MAGDM for the Decision Matrices 

 The numerical decision problem in the above section is attempted to be solved using different ANN 

techniques, thereby reducing the time and workforce required for the computational procedures.  

Pseudo-code for ANN-MAGDM 

Cn: n Matrix IFS dataset of size k x m 

Input {Decision Matrices comprising Intuitionistic Fuzzy data values} 

An = {Collection of n Matrices of size k}; 

//* Aggregation Phase*// 

r3
(2) = (0.4604,0.2485); r4

(2) = (0.4630,0.2150); r5
(2) = (0.4704,0.1577), 

r1
(3) = (0.3188,0.5783); r2

(3) = (0.5429,0.3906); r3
(3) = (0.4604,0.4507), 

r4
(3) = (0.4630,0.3790); r5

(3) = (0.4704,0.3097). 

 μ̃1 = b
(n×γ1) = (0.4217)(3∗0.135814) = 0.7034; μ̃2 = b

(n×γ2) = (0.3180)(3∗0.271628) =

0.3931;  μ̃3 = b
(n×γ3) = (0.3188)(3∗0.592557) = 0.1310; γ̃1 = b

(n×γ1) =

(0.4742)(3∗0.135814) = 0.7379 ;  γ̃2 = b
(n×γ2) = (0.3676)(3∗0.271628) = 0.4424 ;  γ̃3 =

b(n×γ3) = (0.5783)(3∗0.592557) = 0.3777. 

 

IFHAω,w(a1̃,  a2̃, … , añ ) = [1 − ∏ (1 − μ̇ãσ(j)  )
wjn

j=1  ,  ∏ (γ̇ãσ(j)  )
wjn

j=1 ],  

m1 = (1 − [(1 − µa1)
w1  (1 − µa2)

w2  (1 − µa3)
w3
], (γa1)

w1
(γa2)

w2
(γa3)

w3  ), 

m1 = ((1− [

(1 − 0.7034)0.508333 ∗

(1 − 0.3931)0.334829 ∗

(1 − 0.1310)0.156837
]) , (

(0.7379)0.508333 ∗

(0.4424)0.334829 ∗

(0.3777)0.156837
)). 
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  Compute {P-IFWG/ IFWG/OWA/OWG/G-OWA aggregator & the Initial Weight Vector} 

For (n=1; An  ∅; n++) do begin 

Generate {Individual Preference Intuitionistic Fuzzy Decision Matrices, Xn} 

//* XN is the collection of Individual Preference IF-Decision Matrices *// 

Generate {Intuitionistic Fuzzy Attribute Weight Vector} 

While i ≤ m  do {Defuzzify the IF column matrix into a Fuzzy Column matrix} 

Generate {Collective Overall Preference Intuitionistic Fuzzy Decision Matrices/ Weights (Real /Complex 

Eigen values based normalized vector)} 

//*Improvise the input vector by IFHA operator*// 

Input vector {IFHAω,w(a1̃,  a2̃, … , añ ) = [1 − ∏ (1 − μ̇ãσ(j)  )
wjn

j=1  ,  ∏ (γ̇ãσ(j)  )
wjn

j=1 ]} 

//* Learning Phase*// 

Generate {Weight Matrix by IF-Delta/Perceptron/Hebb Rule} 

Update weights for next step 

Continue the weight updation until the target is achieved 

//*Activation function*// 

Fix {The Threshold Value-Based on (Delta/Perceptron/Hebb Rule)} 

While Activated values   Threshold do 

Generate {Matrix for final Decision with values exceeding the Threshold} 

Output{Best Alternative(s) to be chosen} 

{The final decision variable can be converted into a crisp variable, and computations can be performed}.  

End.  

Table 1. Ranking of alternatives of proposed methods and existing models. 

 

Sl. No. MAGDM Method Ranking of Alternatives 

1 Proposed MAGDM: Real eigenvalues A1 > A3 > A2 > A4 > A5 
The high-ranked option is A1. 

2 Proposed MAGDM: Complex eigenvalues A1 > A3 > A2 > A4 > A5 
The high-ranked option is A1. 

3 ANN-MAGDM [34]: P-IFWG operator A4, A5 
4 ANN-MAGDM [34]: IFWG operator A4, A5 
5 ANN-MAGDM [34]: OWA operator A1, A2, A3 
6 ANN-MAGDM [34]: OWG operator A2, A3 
7 ANN-MAGDM [34]: G-OWA operator A1, A2, A3 

8 Classical MAGDM methods [20, 41, 42, 43] 
accuracy functions 

A5 > A2 > A3 > A1 > A4 The most 
desirable alternative is A5. 

9 Classical MAGDM methods [20, 41, 42, 43] 
Hamming distance function excluding intuitionistic 
degree 

A1 > A4 > A3 > A2 > A5 The most 
desirable alternative is A5. 

10 Classical MAGDM methods [20, 41, 42, 43] 
Hamming distance function, including intuitionistic 
degree 

A1 > A4 > A2 > A3 > A5. The most 
desirable alternative is A5. 
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Table 1. Continued. 

Fig. 1. Comparison of ANN thresholds with delta, perceptron, 

and Hebb learning rule with IFS and defuzzified input values 

 

8|Discussion 

This study uses a variety of training techniques, including the traditional MAGDM method and guided 

MAGDM methods based on Artificial Neural Networks (ANNs), by calculating weight vectors from decision 

Ann with the delta learning rule and the input values 

Sl. No.: Target Values Threshold Value Selected Alternatives 

11 t1= -1; t2= 1; t3= -1 0.20395 A1, A4 
12 t1= 1; t2= -1; t3= -1 0.20266 A1, A4 
13 t1= -1; t2= -1; t3= -1 0.1915 A1, A4 
14 t1= 1; t2= -1; t3= 1 0.19432 A2, A3, A5 

Ann with the delta learning rule and defuzzified input values 

 Target Values Threshold Value Selected Alternatives 

15 t1= -1; t2= 1; t3= -1 0.11884 A1, A2 
16 t1= 1; t2= -1; t3= -1 0.11309 A1, A2 
17 t1= -1; t2= -1; t3= -1 0.03679 A1, A2 
18 t1= 1; t2= -1; t3= 1 0.19329 A1, A2 

Ann with the perceptron learning rule and its input values 

 Target Values Threshold Value Selected Alternatives 

19 t1= -1; t2= 1; t3= -1 0.17755 A1, A4 
20 t1= 1; t2= -1; t3= -1 0.15263 A1, A4 
21 t1= -1; t2= -1; t3= -1 0.13017 A1, A4 
22 t1= 1; t2= -1; t3= 1 0.11099 A1, A4 

Ann with the perceptron learning rule and defuzzified input values 

 Target Values Threshold Value Selected Alternatives 

23 t1= -1; t2= 1; t3= -1 -0.1726 A1, A3, A5 
2 t1= 1; t2= -1; t3= -1 -0.17255 A1, A3, A5 
3 t1= -1; t2= -1; t3= -1 -0.17255 A1, A3, A5 
4 t1= 1; t2= -1; t3= 1  0.01377 A1, A5 

Ann with the Hebb learning rule 

 Data Set Threshold Value Selected Alternatives 

1 IFS 0.35331 A2, A3, A5 
2 De-fuzzified Values 2.99435 A2, A5 
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  makers' provided linear operators in Hilbert space and thereby identifying the best options. Various ANN 

techniques, such as the Delta Learning Rule, Perceptron Learning Rule, and Hebbian Learning Rule, are 

included in the numerical example of selecting the optimal option from the list of options. Based on 

performance measurements and the corresponding learning methodology, each method determines the 

optimal option or the set of alternatives. The following are the main results and top options for each method: 

1. Delta Learning Rule: Iterative weight updates converge towards optimal predictions, making all the 

alternatives the best option (depends on the choice of values of targets d1, d2, d3). 2. Perceptron Learning 

Rule: Use binary outputs to categorize acceptability; best options are A1, A3, A4, and A5. 3. Hebbian Learning 

Rule: A2, A3, and A5 are the best options, employing weight updates that are directly impacted by correlations 

between input and output.  

Observations regarding methodological variance: The underlying changes in the learning mechanisms, weight 

update rules, and evaluation criteria of the various ANN approaches account for the observed diversity in the 

best options. The leading causes of these variations are listed below:  

Learning objectives and optimization: To suit the decision-making problem, each method optimizes weights 

in a unique way. For example, the Delta Learning Rule, offers a more straightforward weight adjustment 

process to reduce inconsistencies.  

Weight update mechanisms: Hebbian learning is more sensitive to high-impact features since its weight 

updates are entirely dependent on the connection between inputs and outcomes. As seen with the 

Alternatives, this may result in the selection of options that have a significant impact on the weight calculation. 

Instead of producing a single option, the Perceptron Learning Rule produces many best alternatives (A1, A3, 

A4 and A5) by using binary classification (1 or 0) to find acceptable alternatives.  

Sensitivity to input data: Iterative techniques that constantly modify weights throughout epochs include the 

delta learning rule. Depending on how well they match the desired outputs during optimization, their 

sensitivity to initial weights and error functions may result in the favouring of distinct alternatives. 

Evaluation criteria: The ways in which the approaches rank and evaluate the options vary. For instance, 

Perceptron examines accept/reject classifications based on a threshold, but Hebbian Learning favours the 

option with the largest net input by evaluating alternatives based on their cumulative contributions to weight 

adjustments. 

Approximation and complexity: While more sophisticated techniques capture subtle correlations between 

attributes and outputs, simpler techniques like Hebbian Learning may approximate solutions that match 

prominent patterns in the data. Different best choices may be chosen as a result of this approximation 

discrepancy. 

By understanding these distinctions, decision-makers can choose the most suitable ANN method based on 

the problem's requirements, such as precision, computational efficiency, or interpretability of results. 

Including this perspective enriches the comparative analysis and highlights the methodological diversity in 

applying ANNs to decision-making problems. 

9|Conclusion 

This study presents a novel ANN method using some linear space techniques namely the Spectral theory for 

the generation of effective and efficient input vectors. The proposed method is unusual to the field of ANN 

as well as MAGDM, since the input vector is not directly taken from the data set unlike the earlier methods, 

rather processed using some aggregation operators. In the subsequent sections this paper offers a thorough 

assessment of ANN methods for MAGDM applications, emphasizing their versatility and capacity to improve 

judgment in challenging situations. The adaptability and efficiency of several ANN training techniques in 

addressing MAGDM challenges are illustrated by this comparison study. The Hebbian Learning Rule offered 

an easy-to-use weight modification mechanism based on input-output correlations, whereas the Perceptron 
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  Learning Rule provided a simple framework for decision-making with binary categorization, whereas the 

Delta Learning Rule demonstrated exceptional convergence efficiency.  

The problem's complexity, the level of precision required, and the available computing power all influence 

the method selection. Finally applying ANN to MAGDM problem solving techniques significantly save time 

compared to traditional hand-calculated MAGDM methods by automating weight computations and iterative 

evaluations, enabling faster and more efficient decision-making for complex problems. Since most of the real 

life and business situations are very vague and ambiguous in nature, the DSS coupling ANN will require much 

application of different types of IFSs in the future which will be an interesting area of study for business 

analysists and researchers. 

Acknowledgments 

The authors would like to express their sincere gratitude to all colleagues and institutions that provided 

support and guidance during the course of this research. 

Funding 

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit 

sectors. 

Data Availability 

The data that support the findings of this study are available from the corresponding author upon reasonable 

request. 

References 

[1]  Atanassov, K., Sotirov, S., & Angelova, N. (2020). Intuitionistic fuzzy neural networks with interval valued 

intuitionistic fuzzy conditions. In Intuitionistic and type-2 fuzzy logic enhancements in neural and optimization 

algorithms: theory and applications (pp. 99–106). Cham: Springer International Publishing. 

https://doi.org/10.1007/978-3-030-35445-9_9 

[2]  Atanassov, K., Sotirov, S., & Pencheva, T. (2023). Intuitionistic fuzzy deep neural network. Mathematics, 11(3), 

1–14. https://doi.org/10.3390/math11030716 

[3]  Firouzkouhi, N., Amini, A., Nazari, M., Alkhatib, F., Bordbar, H., Cheng, C., … & Rashidi, M. (2023). Advanced 

artificial intelligence system by intuitionistic fuzzy Gamma-subring for automotive robotic manufacturing. 

Artificial intelligence review, 56(9), 9639–9664. https://doi.org/10.1007/s10462-023-10396-5 

[4]  Hajek, P., Olej, V., Froelich, W., & Novotny, J. (2021). Intuitionistic fuzzy neural network for time series 

forecasting - the case of metal prices. Artificial intelligence applications and innovations (pp. 411–422). Cham: 

Springer International Publishing. https://doi.org/10.1007/978-3-030-79150-6_33 

[5]  Kuo, R. J., & Cheng, W. C. (2019). An intuitionistic fuzzy neural network with gaussian membership function. 

Journal of intelligent & fuzzy systems, 36(6), 6731–6741. https://doi.org/10.3233/JIFS-18998 

[6]  Leonishiya, A., & Robinson, P. J. (2023). A fully linguistic intuitionistic fuzzy artificial neural network model 

for decision support systems. INDIAN journal of science and technology, 16, 29–36. 

https://doi.org/10.17485/IJST/v16iSP4.ICAMS136 

[7]  Petkov, T., Bureva, V., & Popov, S. (2021). Intuitionistic fuzzy evaluation of artificial neural network model. 

Notes on intuitionistic fuzzy sets, 27(4), 71–77. http://dx.doi.org/10.7546/nifs.2021.27.4.71-77 

[8]  Robinson, P. J., & Leonishiya, A. (2024). Application of varieties of learning rules in intuitionistic fuzzy artificial 

neural network. Machine intelligence for research and innovations (pp. 35–45). Singapore: Springer Nature 

Singapore. https://doi.org/10.1007/978-981-99-8129-8_4 

[9]  Robinson, P. J., & Saranraj, A. (2024). Intuitionistic fuzzy gram-schmidt orthogonalized artificial neural 

network for solving MAGDM Problems. Indian journal of science and technology, 17, 2529–2537. 

https://doi.org/10.17485/IJST/v17i24.1386 



Wilson Arul Prakash and John Robinson |Opt. 2(4) (2025) 266-279 

 

279

 
  [10]  Samet, S., Laouar, M. R., Bendib, I., & Eom, S. (2022). Analysis and prediction of diabetes disease using 

machine learning methods. International journal of decision support system technology (IJDSST), 14(1), 1–19. 

https://doi.org/10.4018/IJDSST.303943 

[11]  Santos Neto, J. B. S. dos, & Costa, A. P. (2023). A multi-criteria decision-making model for selecting a maturity 

model. International journal of decision support system technology, 15, 1–15. https://doi.org/10.4018/IJDSST.319305 

[12]  Taherdoost, H. (2023). Deep learning and neural networks: Decision-making implications. Symmetry, 15(9), 1–

22. https://doi.org/10.3390/sym15091723 

[13]  Hussain, W., Merigó, J. M., Gil-Lafuente, J., & Gao, H. (2023). Complex nonlinear neural network prediction 

with IOWA layer. Soft computing, 27(8), 4853–4863. https://doi.org/10.1007/s00500-023-07899-2 

[14]  Zhang, Q., Li, H., Lu, X., & Wu, C. (2022). A neural network-based approach to multi-attribute group 

decision-making with heterogeneous preference information. Scientific programming, 2022(1), 9033237. 

https://doi.org/10.1155/2022/9033237 

 


