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Abstract

This paper explores the extension of matrix eigenvalue theory to the spectral theory of operators on Banach and Hilbert
spaces, focusing on finite-dimensional Hilbert spaces as a foundational step. Since matrices uniquely represent linear operators
in finite-dimensional spaces, the relationship between linear operators and matrices is used to bridge the understanding of
spectral theory. The study begins with a detailed examination of the spectrum of an operator, highlighting its properties and
implications. The core contribution of this work lies in addressing a challenging problem: deriving the decision-maker's weight
vector from concepts rooted in spectral theory. This approach is applied to solve Multiple Attribute Group Decision Making
(MAGDM) problems, demonstrating its theoretical robustness and practical relevance. Furthermore, the same MAGDM
problem is tackled using well-known methods from Artificial Neural Networks (ANNs). A comparative analysis is conducted
to evaluate the practical aspects, productivity, and advantages of the proposed methods compared with existing solutions.
This comprehensive investigation aims to provide deeper insights into the interplay among spectral theory, decision-making,
and ANN techniques, advancing both mathematical theory and practical applications.

Keywords: Eigen values, Spectral theory, MAGDM, Artificial neural network, Operator theory.

1| Introduction

The central aim of spectral theory is to "classify" all linear operators, a task that naturally directs its focus
toward Hilbert spaces. This restriction arises because the general framework for Banach spaces, while
inclusive, remains pootly understood in many respects even today. The clarity and depth achievable in Hilbert
spaces are not only theoretically appealing but also practically significant. Most pivotal applications of spectral
theory tend to reside within this more structured and accessible context. At first glance, this alignment with
Hilbert spaces might appear to be a fortunate coincidence. However, more profound reflection reveals a
deeper reason: Hilbert spaces ate intricately connected to the Euclidean plane and spatial geometry. Unlike
Banach spaces, which may diverge significantly from geometric intuitions, Hilbert spaces retain a natural
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affinity for the geometric principles that underpin much of our understanding of the physical world. Since
Euclidean geometry serves as an accurate description of the universe across many scales, it is hardly surprising
that infinite-dimensional mathematical constructs, when applied to real-world problems, align closely with
the geometric intuition embodied by Hilbert spaces.

Functional analysis equips us with tools to rigorously analyze and classify linear operators, while also
providing a pathway to generalize finite-dimensional results to the infinite-dimensional setting. In some
instances, a firm grasp of integration theory on general measure spaces becomes indispensable. This
requirement stems from the need to work with spaces and operators that arise in various applied and
theoretical contexts, particularly those involving measures and function spaces. Integration theory provides
the mathematical foundation for dealing with such operators, ensuring the necessary rigor and precision. This
work begins by revisiting and condensing the essential knowledge required for further exploration. We start
with a review of the general spectrum of Banach algebras, a fundamental concept that bridges the study of
algebraic and topological properties of operators. The spectrum provides critical insights into operator
behavior, enabling us to classify and analyze them within a broader framework. Next, we delve into the
fundamentals of compact operators on Hilbert spaces. Compact operators play a vital role in spectral theory,
offering a rich structure and numerous applications. Their properties, such as the discreteness of the spectrum
and the accumulation points of eigenvalues, make them particularly interesting for both theoretical and
practical purposes. Before proceeding with the detailed discussion, some preliminary notation and
conventions are introduced to ensure clarity and consistency. These foundational elements provide the basis

for a systematic, structured approach to subsequent analysis.

The data set used in this work was introduced and applied in ANN by [1] and [2]. The Intuitionistic fuzzy
domain was used in ANN-based robotics by [3], and time series forecasting using an IFS-based ANN was
performed in [4]. An intuitionistic fuzzy neural network with a Gaussian membership function was proposed
by [5], and a fully linguistic intuitionistic fuzzy ANN was proposed by [6], and an IFS evaluation of ANN was
put forth in [7]. In [8], vatrious learning rules for IFS ANNSs were applied, and many comparisons with classical
methods were made. The authors in [9] proposed a Gram-Schmidt Orthogonalized ANN in which the input
vector to the ANN was an IFS matrix, the entries were orthogonalized, and the results were compared with
those of existing methods. In this paper, the numerical illustration in [9] will be used for computations, and
our proposed techniques will be compared with those in [9]. Medical applications of machine learning
methods were proposed in [10], and a multi-criteria-based method was proposed in [11]. In [12-14], deep
neural networks and complex neural systems were discussed, which are recent areas of interest for researchers.
In this paper, the balancing (weight) vector provided by the decision makers will be used to solve MAGDM
problems, and the same numerical illustration will be solved using some ANN techniques. Understanding the
differences among the proposed techniques in this work will enable decision-makers to select the best ANN
approach for the given situation, taking into account factors such as accuracy, computational efficiency, and
interpretability of results. By adding this viewpoint, the comparative analysis is enhanced, and the
methodological variation in using ANNSs to solve decision-making problems is highlighted.

2| Spectrum of an Operator on a Finite-Dimensional Hilbert Space

We will define the analogues of operators and their eigenvectors, since we apply matrix eigenvalue theory to

operators on a Hilbert space.

Definition 1. Let T be an operator on space H, which is Hilbert. If there is a non-zero vector x in H such
that Tx=\x, then a scalar A is an eigenvalue (also known as a characteristic value or spectral value) of T.

Definition 2. Any non-zero vector x in H that Tx=Ax is referred to as an eigen vector (also known as

characteristic vector or spectral vector) of T if A is an eigenvalue of T.

Note: The entire theory becomes trivial if there are no non-zero vectors in the Hilbert space, which means
that T cannot have any eigen vectors. Thus, we will assume H# {0} throughout the task. The following
propetty is derived from the definition of eigenvalues and eigenvectors. Let A be an operator T's eigenvalue
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on Hilbert space H. M, is a non-zero closed linear subspace of H that is invariant under T if it is the set of all
eigenvectors of T that correspond to the eigenvalue A and the zero vector 0. Based on the known properties
of M: M ={x€H:Tx=2Ax} ={x€H: (T—ADx=0}. Also, M, is the null space of the continuous
transformation T — Al, because T and I are continuous. Hereby M, should be closed. Next, ix € M,, f then
Tx € M, and hence we should have Tx = Ax. As we know that M, is a linear subspace of H,x € M, which
leads to the result Ax = T, € M,. Altogether, it is now interesting to see that M, is invariant under T.

Definition 3. The eigen space of T that corresponds to the eigenvalue A is the closed subspace M;.
Every eigenspace of T is a non-zero closed Linear subspace of H that is invariant under T.

Note: In general, an operator on a Hilbert space H need not necessarily have an eigenvalue, as will be
discussed in the following illustration.

Example 1. Consider the Hilbert space on [, defined by T(xy, Xy, ..., X,) = {0,X1,Xy, ... }. Suppose A being an
eigenvalue of T, then there exists a non-zero vector (Xq,Xj,..,Xy) such that Tx = Ax, which provides
(0,%4,X3, . ) = (AXq, AXy, ..., AXy) which in turn implies that x; = 0,AX; = X1, AX, = X, ... By hypothesis, x =
(xn) € 1, cannot be a zero vector, so that x,, # 0 for any n. Hence Ax; = 0 implies A=0 and Ax, = x; implies

x1 = 0 contradicting X is a non-zero vector. Hence, it is clear that T' must not have any eigenvalues.
Definition 4. The spectrum of T, represented by o(T), is the collection of all of T's eigenvalues.

The non-emptiness of the spectrum of an operator on a finite-dimensional Hilbert space H is established by

the following theorem.

Theorem 1. The spectrum of T, or o(T), is a finite subset of the complex plane if T'is an arbitrary operator
on a finite-dimensional Hilbert space H. Additionally, the number of points in o(T) does not exceed the

dimension n of H.

Lemma 1. If and only if there is a non-zero vector x in a finite-dimensional Hilbert space H such that Tx=0,
then the operator T on H is singular.

Note: A complex scalar linked with H has at least one point in o(T). It can have up to n points, but no more
than n. If a scalar field is real, then o(T) might be empty. To obtain a richer theory, we typically use the
complex scalar in spectral theory.

The following theorem gives some elementary properties of o(T).

Theorem 2. Suppose T is an operator function on a finite-dimensional Hilbert space, and the preceding

statements hold:
I. T is singular iff 0 € o(T).
II. Suppose T is non-singular, then A € o(T) iff A™* € o(T™1).
II. Suppose A is non-singular, then 6(ATA™?) = o(T).
IV. Suppose A € 6(T), and if P is a polynomial, then it can be proved that P(A) € O'(P(T)).
Next, the spectrum of operators can be expressed as functions of T.

Theorem 3. (Spectral mapping theorem (polynomials)) Suppose T is an operator on a complex Banach space
B, and if p is a polynomial, then it can be proved that c(p(T)) =p(a(T) = {pA): A € a(T)}.

Example 2. Consider the Spectrum of the idempotent operator function T on a Banach space.
By the property of idempotency, T = T or T2 — T = 0. Let p(T) = T? — T.

Then p(T) =0 by hypothesis. Hence p(6*(T) = 6°T — o(T) = o(T)(6(T) —1) =0 so that o(T) =1 or
o(T) = 0. Hence o(T) = {0,1}.
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3| Decision Maker Weight Determining Methods with Real Eigen
Values

MAGDM problem-solving involves the effective involvement of the decision maker, who is responsible for
providing consensus for the process. At one end, the decision maker's weight vector plays a crucial role, and
in situations where the problem-solving techniques depend solely on it, a proper method to elicit it from the
decision maker becomes crucial at the other end. In this paper, and in particular when dealing with a decision
maker who provides weights in the form of linear space problems, we need means and methods to process
this information and retrieve the weights in a proper sense that appropriately suits the decision problem
involved. Here is a model of eliciting a weight vector from the decision maker.

Step 1. Let H be a Hilbert space and T; be a linear operator function on H and ejq, €j,,..., ey, is the basis for
H. LetT(ej1), Ti(eiz), ..., Ti(ej,) be values in H. Let e;q,€43,..,6;n basis for H, where A; =
(Ty(e;1) Ti(esn) .. Ti(en))T.  Let  ey4,€5,..,€,, be another basis for H, where A, =
(Ty(e31) Ty(ez2) - Ty (e2))T. Similarly, we can find A, where A, = (Ty(en1) Ti(enz) - To(enn )T

Step 2. Let A; = (Aj1, Az, .., Aiy) be the real eigenvalues for a matrix A;, where the eigenvalues are in the
spectrum of the space, and form the matrix B;j = (A; Az ... Ay).

Step 3. Find B; * B]-T and then normalize the matrix to elicit the weights wy, Wy, ..., wy, such that YiL, w; = 1.
Problem proposed by decision maker-1

Let us suppose that decision maker-1 provides the balancing (weight) information in the form of the following
linear space problem, which needs to be unlocked by the stakeholder.

Step 1. Let Tybe a linear operator function on Hilbert space R3. Let B; = {e; = (1,0,0),e, = (0,1,0),e;5 =
(0,0,1)} be a basis set. Let T; be defined by, T;(e;) = (X4,X; — ¥1,21) = (1,1,0); Ty (e;) = (X3, 2¥3,25)

1 1 0
(0,2,0); Ty(e3) = (x3,—23,423) = (0,—1,4). The corresponding matrix A; is, A; = <0 2 0), and

0 -1 4
eigenvalues are Ay = {1,2,4}. Let T, be defined by, T,(e;) = (x1,%; +¥1,21) = (1,1,0); To(ez) = (X2, ¥2,2;) =

1 1 0
(0,2,0); Ty(e3) = (x3,—23,223) = (0,—1,2). The corresponding matrix A, is, A, = <0 2 0), and

0 -1 2
eigenvalues are A, = {1,2,2}. Let T; be defined by, Ti(e1) = (z1,¥1,2xy) = (0,0,2); Tz(e;) = (—3y, +
X2, Y2, 6Y2 +23) = (=3,1,6); Ts(e3) = (x3,¥3,23) = (0,0,1).

0 0 2
The corresponding matrix Az is, Az = (—3 1 6), and eigenvalues are A3 = {0,1,1}.
0 0 1

1 1 0
Step 2. The matrix By is, By = (A Az A3), where B; = (2 2 1).
4 2 1

2 4 6
Step 3. Finding B; * B,T, we have the following computation: By * B,T = (4 9 13).
6 13 21

Normalizing B; * BjT, we get the weight vector of Decision Maker-1 as:

y = (0.156837,0.334829,0.508333).

Problem proposed by Decision maker-2: Suppose the decision maker-2 proposes balancing (weight)
information that the stakeholder must unlock.

Step 1. Let T, be a linear operator function on Hilbert space R* and let B, = {b; = (4,2,0),b, = (2,1,5), b
(1,0,0)} be a basis set. The operator T, is defined by, Tu(b;) = (Zl,YI,XZ—l) = (0,1,2); T,(by)

2
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( X2+y2+22

—2x2.y2.f) = (—4,1,4); Ty(bs) = (—5x3,X3, 7X3 +23) = (—=5,1,7). The corresponding eigenvalues
are A, ={1,2,5}. Let the operator Tg is defined by, Ts(b;) = ()(1,}’1,)(1 + Yl) = (4,1,6); Ts(b,) =

2
(zy — 2X3 — Y2,X3,25 — X3) = (0,2,3); Ts(bz) = (23,¥3,9%3) = (0,0,9). The corresponding eigenvalues are
Ls = {2,4,9}. Let the operator T, be defined by, Te(b,) = (zl,y—l —) = (0,1,1); Ts(by) = (=Y Xp,Zy — 2X,) =

2’ 4
(—=1,2,1);Ts(b3) = (—x3, —X3,4x3) = (—1,—1,4). The corresponding eigenvalues are s = {1,2,3}.

1 2 1
Step 2. The matrix B, is formed as: B, = (A4 A5 Ag), where B, = (2 4 2).
5 9 3

6 12 26
Step 3. Finding B, * B,T, we have the following computation: B, * B] = (12 24 152).
26 52 115

Normalizing B; * B]-T, we get the weight vector of decision maker-2 as:

w = (0.135814,0.271628,0.592557).
Problem proposed by decision maker-3

Let us suppose that decision maker-3 proposes balancing (weight) information, which the stakeholder must
unlock.

Step 1. Let T, be a linear operator function on Hilbert space R* and B3 = {¢; = (1,0,0,0), ¢, = (0,1,0,0),¢c5 =
(0,0,1,0),c, = (0,0,0,1)} be the basis. The operator T,defined by, T,(c;) = (2%1,X1,X1,11) =
(2,1,1,0); T,(cz) = (V2,¥2, 22,2 + X2) = (1,2,0,1); T, (c3) = (23,%3, 223,23) = (1,0,2,1); T;(cy) =

(23,14, 14, 2r,) = (0,1,1,2). The corresponding eigenvalues are A; = {4,2,0,2}. Let the operator Tg be defined
bY,TB(C1) = (x1,4%1,y1,11) = (1,4,0,0); Tg(c2) = (X2,¥2,22,12) = (0,2,0,0); Tg(c3) = (5z3,323,23 + X3,23) =
(5,3,1,1); Tg(cy) = (4ry, 71y, 214, 2r,) = (4,7,2,2). The corresponding eigenvalues are Ag = {0,1,2,3}. Let the
operator Ty be defined by, Ty(cy) = (2x4, X4, 3%1, 4%, +11) = (2,1,3,4); To(cz) = (X3, 22, Y2, 3y2) = (0,2,1,3);
To(c3) = (223,23, 623 + X3,523) = (2,1,6,5); To(cy) = (ry,2ry,4r,,81,) = (1,2,4,8). The corresponding
cigenvalues are Ag = {13.0990,1,2.9010,1}. Let the operator Ty, be defined by, Tyo(cy) =
(4x1, —X1, —X1, —X1 + 1) = (4,—1,—1,=1); Tio(cz) = (=y2,4y2, —y2, —Y2) = (=1,4,—1,—1); Tj(c3) =

(=23, 123,423, —23) = (—1,—-1,4,—1); Tyy(cy) = (=14 —1y4, -1y, 4ry) = (—1,—-1,-1,4). The corresponding
cigenvalues are Ay = {1,5,5,5}.

Step 2. The matrix B; is formed as: B; = (A; Ag A9 2Aq0), and hence

4 0 13.0990 1
B.o[2 1 1 5

53710 2 29010 5/
2 3 1 5

Step 3. Finding B; * B, and normalizing B; * B;T, we get the weight vector of Decision Maker-3 as: w =
(0.343122,0.191853,0.226570,0.238453).

Now, as we have elicited the weighting vectors from the 1, 2nd and 3t decision makers, y =
(0.156837,0.334829,0.508333), w = (0.135814,0.271628,0.592557)

and w = (0.343122,0.191853,0.226570,0.238453) respectively, we can make use of these vectors in the
aggregation computation of the decision matrices of the given MAGDM problem to select the best
alternatives.
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4| Decision Maker Weight Determining Methods with Complex
Eigen Values

In the previous case, we used real eigenvalues to determine decision-maker weights; in this section, we
consider complex eigenvalues for determining the decision-maker weight vector.

Step 1. Let H be a Hilbert space and T; be a linear operator function on H and ey, ey, ..., ejyis the basis for
H. LetTi(e;1), Ti(eiz), ..., Ti(ein) be wvalues in H. Let e;;,e43,..,6;, basis for H, where A; =
(Ty(e11) Ti(ern) .. Ti(en))T.  Let  ey1,€5,..,6,, be another basis for H, where A, =
(Ti(ez1) Ty(ez2) - Ti(e24))T. Similarly, we can find A, where A, = (Ty(en1) Ti(enz) - Ti(enn )T

Step 2. Let A; = (Ajg, Ajz, -, Ajn) be the complex eigenvalues for a matrix A;, where the eigenvalues ate in the
spectrum of the space, and form the matrix Ay, = a+ib, [Aj| = Va? + b2, By = (A [Az] ... [A)).
Step 3. Find B; * B]-T and then normalize the matrix to elicit the weights wy, wy, ..., wy, such that YL, wy = 1.
Problem proposed by decision maker-1

Stepl. Let Ty be a linear operator function on Hilbert space R3, and B, = {e; = (1,0,0),e, = (1,1,0),e5 =
(1,1,1)} be a basis set. Let Ty be defined by, Ty (e;) = (7x4, 3%, + y1,8%; +21) = (7,3,8); Ty(ez) = (11x3,9y,, 2%, +
3y,) = (11,9,5); T1(e3) = (6X3,8y3,4z3) = (6,8,4). The corresponding eigenvalues are A=
{20.1981, -0.0990 + i3.1609, —0.0990 — i3.1609}. Let T, be defined by, T,(e;) = (4xy, —2X4,3%X; +24) =
(4,-2,3); To(e;) = (8%z, =3y, 2%, + 3y,) = (8,—3,5); To(e3) = (7x3, —223,423) = (7, —2,4).

The corresponding eigenvalues are A, = {—0.2854 +i0.3132,—0.2854 +10.3132,5.5708}. Let T; be defined
bY, Ts(e1) = (x4, 2x4,2%x1) = (1,2,2); T3(ez) = (2, 3y, 3y, + 2x;) = (2,3,5);  Ts(e3) = (3x3,2y3,323) =
(3,2,3).

The corresponding eigenvalues are A; = {—0.3803 +i0.8703,7.7605, —0.3803 — i0.8703}.

Step2. The matrix By is formed as follows:

A ={20.1981,—-0.0990 + i3.1609, —0.0990 — i3.1609},

A = 20.1981 = [Ay;| = Va2 + b2 = ,/(20.1981)% + 02 = 20.1981,

A1z = —0.0990 +i3.1609 = |A;,| = +/(=0.0990)% + (3.1609)2 = 3.1624,

A3 = —0.0990 — i3.1609 = [A;3] = /(—0.0990)2 + (—3.1609)2 = 3.1624,
A, = {—0.2854 +i0.3132, —0.2854 + i0.3132,5.5708},

Ay1 = —0.2854 +10.3132 = |Ay; | = 4/(—0.2854)2 + (0.3132)2 = 0.4237,

Ay = —0.2854 —i0.3132 = |Ay,| = 4/(—0.2854)2 + (—0.3132)2 = 0.4237,

Ay3 = 5.5708 = |A3| = v/a? + b2 = \/(5.5708)2 + 02 = 5.5708,
A; = {—0.3803 +i0.8703,7.7605, —0.3803 — i0.8703},

31 = —0.3803 + i0.8703 = |A,;| = VaZ + bZ = ,/(—0.3803)2 + (0.8703)?
0.9497,

A3z = 7.7605 = |A3,| = +/(7.7605)2 + 02 = 7.7605,

A33 = —0.3803 + i0.8703 = |A,; | = VaZ + bZ = ,/(—0.3803)2 + (0.8703)?
0.9497.
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Now the matrix B; is: By = (|Aq| |Az] |A3]), where B; = 3.1624 0.4237 7.7605

(20.1981 0.4237 0.9497)
3.1624 5.5708 0.9497

Step3. Finding B, * B, ", we have the following computation:

71.4241 70.4057 19.7313

409.0447 71.4241 67.1367
B, *Bf = :
67.1367 19.7313 41.9365

0.7470 0.4421 0.5212

Normalizing Bj * BjT, we get the matrix as: (B *x BDN = <0.1304 0.4358 0.1532), where N represents
0.1226 0.1221 0.3256

the normalized matrix. Further, taking the average of the entries, we get the weights as w =

{0.5701,0.2398,0.1901}.
Problem proposed by decision maker-2

Let T, be a linear operator function on Hilbert space R* and B, = {b; = (4,2,0),b, = (6,3,5),b; = (7,3,5)} is
a basis set. The operator T, be defined by, T,(b,) = (X—l E,ﬂ) =(1,3,1); Tu(by) = (—Xf,yz - 1,2—3) =

4’2 6 5
(=1,2,-1); Tu(b3) = (x3 — 5,2y3,7x3 + 5y3 — 3z3) = (2,6,0). The collection of ecigenvalues is A, =

{—0.8232,1.9116 +12.9143,1.9116 — i2.9143}. The operator T defined by, Ts(by) = (y1, X1, %, +21) =
(2,44); Ts(by) = (Zf,x?z,yz) = (1,2,3); Ts(b3) = (—y3,Y3_+ZZ3, —23) = (—3,—4,—5). The collection of
cigenvalues is A5 = {+2i, —2i, —1}. The operator Tgdefined by, Tg(b;) = (3x; + 1, —3x4, 4y;,) = (13,-12,7);
Te(by) = (v, + 1,—2,5,%,) = (4,—5,6); Tg(b3) = (—y3,—23 — 1,—x3 — 1) = (—3,—6,—8). The collection of
eigenvalues is Ag = {—3.5883 +i7.8240,—-0.8233,—3.5883 —i7.8240}. Following similar computations as
for decision maker-1, we get the weights as y = (0.3828,0.1727,0.4445).

Problem proposed by decision maker-3

Let T, be a linear operator on Hilbert space R*and B3 = {c; = (1,0,0,0),c, = (1,1,0,0),¢c5 =
(1,1,1,0),c4 = (1,1,1,1)} be a basis set. The operator T, defined by, T,(c;) = (X4, 2%y, =X, 17) = (1,2, —1,0);
T7(C2) = (Zz, SXZ, 3y2' 1‘2) = (0,5,3,0); T7(C3) = (_2X3, I‘3,X3 - Y3, 423) = (_2,0,0,4’); T7(C4_) = (X4 -
Z4,6Y4, —424, —314) = (0,6, —4, —3). The operator Tg defined by, Tg(c;) = (9%x4, 13x4, 5%4, 2%4) = (9,13,5,2);

Tg(cz) = (X5, 11y,, 4%, + 3y,, 3%, + 3y,) = (1,11,7,6); (c3) = (3X3, 7y3,4Z3,y3) =(3,7,4,1); Tg(cy) = (6X4,y4 -
Z4,724,1014) = (6,0,7,10). The operator Ty defined by, To(c;) = (X1, 4%, + ¥4, 2X1 + 24, 3%; +17) = (1,4,2,3);
To(cz) = (X2¥2, Y2, 4%2,4y2) = (0,1,44);  To(cz) = (—X3,¥3 — 23,23,13) = (—1,041);  To(cy) = (2%4,24 —
ry,424,1,) = (2,0,4,1). Following similar computations, we get the weights as:

w = (0.2853,0.2133,0.38225,0.119175).

Similar to the computations with real eigen values, as we have elicited the weighting vectors from the total
decision makers involved in the problem, from the first w = (0.5701,0.2398,0.1901), from the second y =
(0.3828,0.1727,0.4445) and from the third decision maker w = (0.2853,0.2133,0.38225,0.119175), we can
make use of these vectors in the aggregation computation of the decision matrices of the given MAGDM
problem to select the best alternatives.

5| Algorithm for the Classical Decision-Making Method

Step 1. Compress or reduce the number of columns of all matrices, keeping the number of matrices
unchanged, using the IFWAA aggregation operator and the balancing vector (weight) provided by the
decision maker.

Step 2. Compress or reduce the number of matrices into a single matrix with a single column using the IFHA
aggregation operator and the balancing vector (weight) provided by the decision maker.
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Step 3. In this step, the correlations are computed between the final m;'s, and the ideal IFS value, where
m; = (0,1). The correlation of G,H € IFSs(X) is given by a formula Cry (G, H) =% L lugpuy(xp) +
Y6 X yu (i) + T (x) 1w (x:)].

Step 4. Here, the correlation coefficient is displayed for the selection of the best option: przg (my, i;),
CrzL(GH)

Crz1(G,G)Crzy, (HH)'

Step 5. Arranging the options based on the computed prz (G, H), we can obtain the most preferred choice

where pr4(G,H) =

based on the highest relationship between the variables.

6 | Numerical Illustration: MAGDM with Weights Derived From
Linear Space Methods with Real and Complex Eigen Values

Consider the numerical illustration in [9] of the Risk Investment company, with five investment options
based on criteria that must be evaluated against the alternatives. The balancing vectors (weights) are w =
(0.156837,0.334829,0.508333),y = (0.135814,0.271628,0.592557) and w =
(0.343122,0.191853,0.226570,0.238453), which are evaluated from the process of the information given by
the decision makers and derived from the real eigenvalues. The decision matrices provided by the decision
makers are:

(0.5,0.4) (0.6,0.3) (0.3,0.6) (0.2,0.7)

{ (0.7,0.3) (0.7,0.2) (0.7,0.2) (0.4, 0.5)\

R, = | (0.6,0.4) (0.5,0.4) (0.5,0.3) (0.2,0.3) |,
(0.8,0.1) (0.6,0.3) (0.3,0.4) (0.2,0.6)
(0.6,0.2) (0.4,0.3) (0.7,0.1) (0.1,0.3)

(0.4,0.3) (0.5,0.2) (0.2,0.5) (0.1,0.6)
(0.6,0.2) (0.6,0.1) (0.6,0.1) (0.3,0.4)
R, =| (0.5,0.3) (0.4,0.3) (0.4,0.2) (0.5,0.2) |,
(0.7,0.1) (0.5,0.2) (0.2,0.3) (0.1,0.5)
(0.5,0.1) (0.3,0.2) (0.6,0.2) (0.4,0.2)

(0.6,0.4) (0.6,0.3) (0.6,0.3) (0.3,0.6)
(0.5,0.5) (0.4,0.5) (0.4,0.4) (0.5,0.4)
(0.7,0.2) (0.5,0.4) (0.2,0.5) (0.1,0.7)
(0.5,0.3) (0.3,0.4) (0.6,0.2) (0.4,0.4)

(0.4,0.5) (0.5,0.4) (0.2,0.7) (0.1,0.8)
R3 = ( \

Step 1. The IFWAA operator compresses the columns and reduces each matrix to a single column.

IFWAAGEY, a7, ..,85) = Sl a0 = (1 =TT, (1 — 1 )%, THLa(va)® ).
B = (1-[(1- 1) (1= 12,)” (1 - 1) (1 -

0, ™ (0™ (4,) ™ ()™ (4,) ™)

rl(l) _ (1 3 (1 _ 0_5)0.34—3122 % (1 _ 0.6)0'191853 *]> <(0_4)0.343122 * (0_3)0.191853 *) .
(1 _ 0_3)0.226570 * (1 _ 0.2)0.238453 4 (0.6)0'226570 * (0.7)0.238453

r; (M = (0.4217,0.4742). Similarly, all the other values can be computed.

r,(M = (0.6461,0.2860); r;™ = (0.4819,0.3499); r, = (0.5777,0.2591),

rs( = (0.5085,0.2035); r; ? = (0.3180,0.3676); r,® = (0.5429,0.1765),
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r;® = (0.4604,0.2485); 1, = (0.4630,0.2150); rs(® = (0.4704,0.1577),
r;® = (0.3188,0.5783); 1, = (0.5429,0.3906); r;® = (0.4604,0.4507),
r, ) = (0.4630,0.3790); rs® = (0.4704,0.3097).

Step 2. The IFHA operator compresses the three matrices into a single final matrix, ready for decision-
making, Then for r; = (0.4217,0.4742); r;® = (0.3180,0.3676); 1, = (0.3188,0.5783), where w =
(0.156837,0.334829,0.508333) and y' = (0.592557,0.271628,0.135814), we have the computations as

follows:

i, = p@™xv1) — (0.4217)(3*0.135814) =0.7034; i, = p@xv2) — (0.3180)(3*0-271628) =
0.3931; fi; = b®*¥s) = (0.3188)(*0592557) = 0,1310; ¥, = b™¥2) =
(0.4742)B*0135814) — (07379 ; §, = b(™*V2) = (0.3676)(3*0271628) = (04424 ; ¥, =
b®™xY3) = (0,5783)(3+0592557) = 0,3777.

Utilizing the IFHA operator, we get,
IFHA 4, (&, @3, 0,85 ) = [1 =TI (1 = g )™ 0 T (Vg D),

my = (1-[(1- “al)W1 (1- “az)wz (1- “33)W3]' (Yal)W1 (Yaz)wz (Yas)W3 )

(1 —0.7034)0:508333 4 (0.7379)0-508333
my = || 1—[(1—0.3931)0334829 «| | | (0.4424)0-334829 4
(1 —0.1310)%156837 (0.3777)0-156837

m; = (0.5538,0.5598). Similarly, we can compute all other values, and hence, m; = (0.5538,0.5598); m, =
(0.7275,0.3699); m; = (0.6282,0.4406);m, = (0.6734,0.3792); mg = (0.6437,0.3133).

Step 3. In this step, the correlations are computed between the final m;’s, and the ideal IFS value f; = (0,1).
Crgp(my, i) = 0.5598;  Crgp(my, fii)) = 0.1850;  Crgy(ms, fii;)) = 0.1469;  Crgy.(my, fii;) = 0.0948;
CrZL(ms, fﬁI) = 0.0627.

Step 4. Now, the correlation coefficient is displayed for the selection of the best option: prz(m,, fii;) =
07036, prZL(mz, fﬁl) = 03183, prZL(m3, I’Yll) = 03303, prZL(m4, I’fll) = 02448, prZL(rs, fS) = 0.1955.

Step 5. Arranging the options based on the computed prz; (m;, ;), we can observe that A is the most
preferred choice.

Proceeding with the same algorithm, but utilizing the weight vectors from complex eigenvalues, the ranking
of all the alternatives using the correlations obtained, it is easy to note that even here, A; is the preferred
choice of the available options, with a high correlation.

7 | Artificial Neural Network-MAGDM for the Decision Matrices

The numerical decision problem in the above section is attempted to be solved using different ANN
techniques, thereby reducing the time and workforce required for the computational procedures.

Pseudo-code for ANN-MAGDM

Cn: n Matrix IFS dataset of size k x m

Input {Decision Matrices comprising Intuitionistic Fuzzy data values}
Ay = {Collection of n Matrices of size k};

//* Aggregation Phase*//
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Compute {P-IFWG/ IFWG/OWA/OWG/G-OWA aggregator & the Initial Weight Vector}

For (n=1; An# @; n++) do begin

Generate {Individual Preference Intuitionistic Fuzzy Decision Matrices, X}

//* Xuis the collection of Individual Preference IF-Decision Matrices *//

Generate {Intuitionistic Fuzzy Attribute Weight Vector}

While i < m do {Defuzzify the IF column matrix into a Fuzzy Column matrix}

Generate {Collective Overall Preference Intuitionistic Fuzzy Decision Matrices/ Weights (Real /Complex

Eigen values based normalized vector) }

//*Improvise the input vector by IFHA operator*//

Input vector {IFHA g (@, @, ., 85 ) = [1 =TTy (1 = s, )™ TI (agg, )™ |}

//* Learning Phase*//

Generate {Weight Matrix by IF-Delta/Perceptron/Hebb Rule}

Update weights for next step

Continue the weight updation until the target is achieved

/ /*Activation function*//

Fix {The Threshold Value-Based on (Delta/Perceptron/Hebb Rule)}

While Activated values 2 Threshold do

Generate {Matrix for final Decision with values exceeding the Threshold}

Output{Best Alternative(s) to be chosen}

{The final decision variable can be converted into a crisp variable, and computations can be performed}.

End.
Table 1. Ranking of alternatives of proposed methods and existing models.
Sl. No. MAGDM Method Ranking of Alternatives
1 Proposed MAGDM: Real eigenvalues AL >A; > A, > A, > Ag
The high-ranked option is A;.
2 Proposed MAGDM: Complex eigenvalues A > A3 > A > A > A
The high-ranked option is A;.

3 ANN-MAGDM [34]: P-IFWG operator A4, A5

4 ANN-MAGDM [34]: IFWG operator A4, A5

5 ANN-MAGDM [34]: OWA operator A1, A2, A3

6 ANN-MAGDM [34]: OWG operator A2, A3

7 ANN-MAGDM [34]: G-OWA operator Al, A2, A3

8 Classical MAGDM methods [20, 41, 42, 43] As > A, > A; > A, > A, The most
accuracy functions desirable alternative is As.

9 Classical MAGDM methods [20, 41, 42, 43] Ay > A, > Ay > A, > A; The most
Hamming distance function excluding intuitionistic desirable alternative is As.
degree

10 Classical MAGDM methods [20, 41, 42, 43] Ay > A, > A, > Ay > Ag. The most

Hamming distance function, including intuitionistic
degree

desirable alternative is As.
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Table 1. Continued.

Ann with the delta learning rule and the input values

Sl. No.: Target Values Threshold Value Selected Alternatives
11 tl=-1; 2= 1; 3= -1 0.20395 Al, A4
12 tl1=1; 2= -1; 3= -1 0.20266 Al, A4
13 tl=-1; 2= -1; 3= -1 0.1915 Al, A4
14 tI=1;2=-1;3=1 0.19432 A2, A3, A5
Ann with the delta learning rule and defuzzified input values
Target Values Threshold Value Selected Alternatives
15 tl=-1; 2= 1; 3= -1 0.11884 Al, A2
16 tl1=1; 2= -1; 3= -1 0.11309 Al, A2
17 tl=-1; 2= -1; 3= -1 0.03679 Al, A2
18 tl=1;t2=-1;t3=1 0.19329 Al, A2
Ann with the perceptron learning rule and its input values
Target Values Threshold Value Selected Alternatives
19 tl=-1; 2= 1; t3= -1 0.17755 Al, A4
20 tl=1;t2=-1; t3= -1 0.15263 Al, A4
21 tl=-1; 2= -1; t3= -1 0.13017 Al, A4
22 tI=1;2=-1;3=1 0.11099 Al, A4
Ann with the perceptron learning rule and defuzzified input values
Target Values Threshold Value Selected Alternatives
23 tl=-1; 2= 1; 3= -1 -0.1726 Al, A3, A5
2 tl1=1; 2= -1; 3= -1 -0.17255 Al, A3, A5
3 tl=-1; 2= -1; 3= -1 -0.17255 A1, A3, A5
4 tl=1;t2=-1;3=1 0.01377 Al, A5
Ann with the Hebb learning rule
Data Set Threshold Value Selected Alternatives
1 IFS 0.35331 A2, A3, A5
2 De-fuzzified Values 2.99435 A2, A5

-0.1730

-0.1259

-0.07875

-0.03183

0.01550

0.06262

0.1087

0.1569

0.2040

Fig. 1. Comparison of ANN thresholds with delta, perceptron,
and Hebb learning rule with IFS and defuzzified input values

8| Discussion

This study uses a variety of training techniques, including the traditional MAGDM method and guided
MAGDM methods based on Artificial Neural Networks (ANNSs), by calculating weight vectors from decision
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makers' provided linear operators in Hilbert space and thereby identifying the best options. Various ANN
techniques, such as the Delta Learning Rule, Perceptron Learning Rule, and Hebbian Learning Rule, are
included in the numerical example of selecting the optimal option from the list of options. Based on
performance measurements and the corresponding learning methodology, each method determines the
optimal option or the set of alternatives. The following are the main results and top options for each method:
1. Delta Learning Rule: Iterative weight updates converge towards optimal predictions, making all the
alternatives the best option (depends on the choice of values of targets d1, d2, d3). 2. Perceptron Learning
Rule: Use binary outputs to categorize acceptability; best options are A1, A3, A4, and A5. 3. Hebbian Learning
Rule: A2, A3, and A5 are the best options, employing weight updates that are directly impacted by correlations
between input and output.

Observations regarding methodological variance: The underlying changes in the learning mechanisms, weight
update rules, and evaluation criteria of the various ANN approaches account for the observed diversity in the
best options. The leading causes of these variations are listed below:

Learning objectives and optimization: To suit the decision-making problem, each method optimizes weights
in a unique way. For example, the Delta Learning Rule, offers a more straightforward weight adjustment
process to reduce inconsistencies.

Weight update mechanisms: Hebbian learning is more sensitive to high-impact features since its weight
updates are entirely dependent on the connection between inputs and outcomes. As seen with the
Alternatives, this may result in the selection of options that have a significant impact on the weight calculation.
Instead of producing a single option, the Perceptron Learning Rule produces many best alternatives (A1, A3,
A4 and A5) by using binary classification (1 or 0) to find acceptable alternatives.

Sensitivity to input data: Iterative techniques that constantly modify weights throughout epochs include the
delta learning rule. Depending on how well they match the desired outputs during optimization, their
sensitivity to initial weights and error functions may result in the favouring of distinct alternatives.

Evaluation criteria: The ways in which the approaches rank and evaluate the options vary. For instance,
Perceptron examines accept/reject classifications based on a threshold, but Hebbian Learning favours the
option with the largest net input by evaluating alternatives based on their cumulative contributions to weight
adjustments.

Approximation and complexity: While more sophisticated techniques capture subtle correlations between
attributes and outputs, simpler techniques like Hebbian Learning may approximate solutions that match
prominent patterns in the data. Different best choices may be chosen as a result of this approximation

discrepancy.

By understanding these distinctions, decision-makers can choose the most suitable ANN method based on
the problem's requitements, such as precision, computational efficiency, or interpretability of results.
Including this perspective enriches the comparative analysis and highlights the methodological diversity in
applying ANNSs to decision-making problems.

9| Conclusion

This study presents a novel ANN method using some linear space techniques namely the Spectral theory for
the generation of effective and efficient input vectors. The proposed method is unusual to the field of ANN
as well as MAGDM, since the input vector is not directly taken from the data set unlike the earlier methods,
rather processed using some aggregation operators. In the subsequent sections this paper offers a thorough
assessment of ANN methods for MAGDM applications, emphasizing their versatility and capacity to improve
judgment in challenging situations. The adaptability and efficiency of several ANN training techniques in
addressing MAGDM challenges are illustrated by this compatison study. The Hebbian Learning Rule offered
an easy-to-use weight modification mechanism based on input-output correlations, whereas the Perceptron
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Learning Rule provided a simple framework for decision-making with binary categorization, whereas the
Delta Learning Rule demonstrated exceptional convergence efficiency.

The problem's complexity, the level of precision required, and the available computing power all influence
the method selection. Finally applying ANN to MAGDM problem solving techniques significantly save time
compared to traditional hand-calculated MAGDM methods by automating weight computations and iterative
evaluations, enabling faster and more efficient decision-making for complex problems. Since most of the real
life and business situations are very vague and ambiguous in nature, the DSS coupling ANN will require much
application of different types of IFSs in the future which will be an interesting area of study for business
analysists and researchers.
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