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1|Introduction    

The steel industry is a cornerstone of modern economies, underpinning infrastructure development, 

manufacturing, and transportation worldwide. As one of the most energy-intensive industries, it accounts for 
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Abstract 

The steel industry is a cornerstone of global economies, but also one of the most energy-intensive sectors, 

contributing significantly to CO₂ emissions. This issue is exacerbated in developing countries, where rapid industrial 

growth, outdated technologies, and resource limitations drive higher energy consumption. This study identifies and 

ranks energy-consumption-reduction technologies for the steel industry in developing economies, focusing on their 

applicability and potential for significant energy savings. The research integrates the Fuzzy Delphi Method (FDM) 

and Interval Type-2 Fuzzy Best-Worst Method (IT2F-BWM) to screen and prioritize technologies under conditions 

of uncertainty. Seven key technologies were validated by an expert panel, including waste heat recovery systems, 

hydrogen injection, and improvements to continuous casting. The IT2F-BWM model effectively handles expert 

judgment imprecision and provides a robust ranking of technologies based on criteria such as energy efficiency, 

economic feasibility, and environmental impact. The findings reveal that technologies such as waste heat recovery 

and hydrogen injection offer the most significant potential for energy savings (10-50%) and contribute to global 

decarbonization goals. This study provides policymakers and industry leaders with a practical decision-making tool, 

offering a pathway to sustainable energy practices tailored to the unique challenges of developing economies. Future 

research should explore dynamic modeling and cross-country comparisons further to refine energy efficiency 

strategies for the steel industry.  
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  approximately 7-9% of global energy consumption and contributes significantly to greenhouse gas emissions, 

with estimates indicating that steel production alone is responsible for about 8% of global CO₂ emissions [1], 

[2]. In developing countries, where rapid industrialization and urbanization are driving exponential growth in 

steel demand, these challenges are amplified [3]. For instance, nations such as China, India, and Brazil, which 

collectively produce over 60% of the world's steel, face escalating energy demands amid limited resources and 

environmental constraints [4]. The International Energy Agency (IEA) projects that, without substantial 

interventions, energy consumption in the steel sector could rise by 20-30% by 2050 in these regions, 

exacerbating issues such as energy security, climate change, and economic inefficiency [5]. This underscores 

the urgent need for sustainable practices that prioritize energy efficiency, particularly in developing economies 

where outdated technologies and infrastructural limitations often result in higher Specific Energy 

Consumption (SEC) rates—typically 20-40% above those in developed nations [6]. 

Despite these imperatives, the adoption of energy-efficient technologies in the steel industry remains uneven, 

especially in developing countries [7]. Traditional steelmaking processes, such as the Basic Oxygen Furnace 

(BOF) and Electric Arc Furnace (EAF) routes, are inherently energy-intensive, with primary production 

requiring 20-25 GJ per ton of crude steel [8]. The literature highlights a range of technologies aimed at 

mitigating this, including waste heat recovery systems, advanced process controls, scrap recycling 

enhancements, and alternative fuels such as hydrogen injection [8], [9]. Studies have explored these in contexts 

such as energy auditing and lifecycle assessments, revealing potential reductions in energy use of 10-50% 

depending on implementation [10]. However, much of the existing research focuses on developed economies, 

with limited attention to the unique socio-economic, regulatory, and technological barriers in developing 

countries, such as capital constraints, skill gaps, and supply chain vulnerabilities [11]. This gap is evident in 

reviews that emphasize technological feasibility but overlook context-specific prioritization, often relying on 

deterministic methods that fail to account for uncertainties inherent in emerging markets [11], [12]. 

To address these shortcomings, this study employs a systematic approach to identify, screen, and rank energy-

consumption-reduction technologies tailored to the steel industry in developing countries. Drawing on a 

comprehensive literature review, we first compile a portfolio of relevant technologies encompassing areas 

such as process optimization (e.g., continuous casting improvements), material efficiency (e.g., thin-slab 

casting), and renewable integration (e.g., biomass co-firing). These are then screened using the Fuzzy Delphi 

Method (FDM), which incorporates expert opinions under uncertainty to refine the list to the most viable 

options. Finally, the fuzzy best-worst method (IT2F-BWM) is applied for ranking, providing a robust multi-

criteria decision-making framework that handles vagueness in judgments more effectively than traditional 

analytic hierarchy process (AHP) variants. 

The novelty of this work lies in its integration of fuzzy logic into both screening and ranking phases, offering 

a nuanced decision-support tool specifically for developing countries. Unlike prior studies that provide 

generic rankings or ignore epistemic uncertainties, this approach yields context-sensitive insights, enabling 

stakeholders to prioritize technologies that balance economic feasibility, environmental impact, and 

technological readiness in resource-constrained settings. By bridging methodological gaps in multi-criteria 

decision-making for energy efficiency, this research contributes to sustainable industrial transitions aligned 

with global agendas, such as the United Nations Sustainable Development Goals (SDGs). 

The research questions guiding this investigation are as follows: 

I. What are the key energy consumption reduction technologies identified through the literature review that 

apply to the steel industry in developing countries? 

II. How do the screened technologies rank in terms of priority using the IT2F-BWM, and what implications 

does this ranking hold for policy and implementation in developing economies? 

This paper is structured as follows: Section 2 reviews the literature on energy-efficient technologies in 

steelmaking; Section 3 details the methodology, including the fuzzy Delphi and IT2F-BWM methods; Section 
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4 presents the results and analysis; Section 5 discusses implications and limitations; and concludes with 

recommendations for future research. 

2|Literature Review 

This section provides a comprehensive review of the existing literature on energy consumption in the steel 

industry, with a focus on developing countries. It is structured into five subsections: an overview of the steel 

industry in developing countries; energy consumption patterns and challenges; barriers to the adoption of 

energy efficiency; multi-criteria decision-making methods for technology ranking; and identification of key 

energy-reduction technologies. 

2.1|Overview of the Steel Industry in Developing Countries 

The steel industry plays a pivotal role in the economic development of emerging nations, serving as a key 

driver of infrastructure, manufacturing, and employment. In developing countries, steel production has seen 

rapid expansion, with China, India, and Brazil accounting for over 60% of global output in recent years [1]. 

This growth is fueled by urbanization, population increases, and industrial policies aimed at self-sufficiency 

[13]. However, the sector's reliance on energy-intensive processes poses sustainability challenges, particularly 

in regions with limited access to advanced technologies and renewable energy sources [2]. Recent studies 

show that while developed economies have transitioned to more efficient EAF routes, developing countries 

predominantly use BOF methods, which are less efficient but better suited to available raw materials such as 

iron ore [14]. The OECD Steel Outlook 2025 emphasizes the need for policy interventions to balance 

economic growth with environmental sustainability in these contexts [6]. Overall, the literature underscores 

the dual opportunity and challenge: leveraging steel for development while mitigating its environmental 

footprint [13]. 

2.2|Energy Consumption Patterns and Challenges in Steel Production 

The intricate patterns of energy consumption in steel production are deeply rooted in the fundamental 

processes that define the industry, particularly ironmaking, steelmaking, and rolling. Ironmaking, often 

conducted in blast furnaces, relies heavily on chemical reactions to reduce iron ore into molten iron. This step 

demands intense thermal energy to sustain high temperatures and facilitate the necessary metallurgical 

transformations. This is compounded in steelmaking, where processes like the BOF or EAF convert raw 

materials into liquid steel through oxidation or melting, further amplifying energy needs due to the inherent 

inefficiencies in heat transfer and material handling. Rolling, the final shaping phase, adds another layer by 

requiring mechanical energy to deform hot steel into usable forms, often involving repeated heating to 

maintain malleability. At the core of these patterns is a profound dependence on fossil fuels such as coal for 

both energy and as a reducing agent, alongside electricity for powering furnaces and machinery, which creates 

a systemic vulnerability to resource availability and environmental impacts [15], [16]. 

In developing countries, these consumption patterns are exacerbated by structural factors that perpetuate 

inefficiency. Unlike in advanced economies, where modern technologies enable optimized energy flows, many 

facilities in emerging markets operate with legacy equipment that lacks advanced controls, resulting in 

excessive heat loss, suboptimal process integration, and prolonged production cycles. This is particularly 

evident in the dominance of primary production routes, which start from raw ores and consume vast amounts 

of energy in extraction and initial processing, compared with secondary routes that recycle scrap and 

inherently require less input. The reliance on outdated infrastructure not only inflates operational costs but 

also hinders the adoption of cleaner alternatives, trapping industries in a cycle of high energy intensity driven 

by limited access to capital for upgrades and a workforce that may lack specialized training in efficient 

practices [17]. 

The challenges embedded in these patterns extend beyond technical limitations to encompass economic and 

regulatory dimensions. Fluctuating energy prices, influenced by global market volatilities and geopolitical 
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  tensions, pose a constant threat to profitability, forcing producers to navigate unpredictable costs that can 

disrupt long-term planning. Supply chain disruptions, whether from raw material shortages or logistical 

bottlenecks, further complicate energy management, as inconsistent inputs lead to irregular operations and 

wasted resources. Increasing regulatory pressures for decarbonization add another layer of complexity, as 

governments in developing regions grapple with balancing industrial growth against international 

commitments to reduce emissions, often imposing standards that require transformative shifts without 

adequate support mechanisms. This interplay creates a paradox: while energy demand growth in emerging 

economies has shown signs of moderation in recent years due to efficiency gains and economic shifts, the 

absence of proactive interventions risks amplifying future pressures as population-driven demand escalates 

[18–20]. 

Moreover, the linkage between energy consumption and CO₂ emissions underscores a broader environmental 

challenge: heavy reliance on fossil fuels in developing contexts not only contributes to global climate change 

but also perpetuates local pollution and resource depletion. This dependency fosters a vicious cycle, as efforts 

to scale production for economic development inadvertently heighten vulnerability to climate-related 

disruptions. Addressing these entrenched patterns demands targeted innovations that rethink the entire value 

chain —from integrating renewable energy sources to fostering circular economies that prioritize recycling 

and waste minimization —while ensuring solutions are adaptable to the socio-economic realities of 

developing nations [21], [22]. 

2.3|Barriers to Energy Efficiency Adoption 

In developing countries, the adoption of energy efficiency technologies in the steel industry is significantly 

hindered by a complex array of barriers. Economic constraints are among the most pressing challenges, with 

the high upfront costs of energy-efficient technologies and limited access to financing being key obstacles. 

This is especially problematic for small and medium-sized enterprises (SMEs), which often lack the financial 

resources to invest in advanced energy-saving solutions. Additionally, technological barriers further 

exacerbate the situation. The absence of a sufficiently skilled workforce, combined with inadequate 

infrastructure for integrating modern technologies, makes the transition to energy efficiency more difficult. 

The incompatibility of new technologies with existing equipment and systems also poses a significant 

challenge for many steel producers in developing nations [23], [24]. 

Regulatory and policy-related issues add another layer of complexity. In many cases, there is a lack of 

consistent, robust policy frameworks to support green investments, leaving industries without clear incentives 

to adopt energy-efficient practices. Furthermore, socio-cultural factors contribute to the slow adoption of 

these technologies. Resistance to change within companies, coupled with low awareness of the long-term 

economic and environmental benefits of energy efficiency, often delays decision-making. These challenges 

are compounded by broader geopolitical and supply chain vulnerabilities, especially pronounced in regions 

such as Sub-Saharan Africa and Southeast Asia, where external factors, such as political instability or 

fluctuating market conditions, further impede progress toward energy efficiency goals [25]. 

While these barriers result in significant energy inefficiencies, they also present opportunities for tailored 

solutions. Overcoming these challenges requires a comprehensive approach that addresses both the technical 

and non-technical aspects of energy efficiency adoption. Collaboration between governments, international 

organizations, and the private sector is crucial, as is the need for capacity-building programs to foster the 

development of local expertise and infrastructure. Only through coordinated efforts can developing countries 

overcome the barriers to energy efficiency in the steel industry and make meaningful progress toward more 

sustainable, cost-effective practices. 

2.4|Identification of Energy-Reduction Technologies in the Steel Industry 

The literature reveals a broad spectrum of innovative technologies designed to reduce energy consumption 

in the steel industry, with a particular focus on the unique challenges and opportunities within developing 
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countries. These technologies encompass a variety of approaches, including process optimization, material 

efficiency, and the integration of alternative energy sources. A central theme in this body of research is the 

potential for these technologies to not only reduce energy use but also enhance overall sustainability in 

resource-constrained environments. Among the most promising solutions are waste heat recovery systems, 

which capture and reuse thermal energy from exhaust gases, thereby significantly improving energy efficiency. 

Additionally, integrating hydrogen injection into blast furnaces as a substitute for carbon-based reductants 

offers a pathway to decarbonize steel production processes, aligning with global sustainability goals [26]. 

Further innovations include the application of advanced process controls powered by artificial intelligence 

(AI) and the Internet of Things (IoT), enabling real-time monitoring and optimization of production 

parameters and enhancing energy performance. In parallel, improvements in scrap recycling have been shown 

to increase the efficiency of EAFs, a vital process in steel production. Renewable energy integration, such as 

biomass co-firing, provides a means to reduce reliance on fossil fuels and further mitigate the environmental 

impact of steel production. Collectively, these technologies form comprehensive portfolios tailored to the 

needs of developing countries, emphasizing their feasibility and adaptability in environments where resources 

and infrastructure may be limited. The implementation of such technologies, however, requires careful 

consideration of local conditions and the unique challenges faced by steel producers in these regions [27]. 

To synthesize this, Table 1 presents a compilation of prominent energy-reduction technologies, including 

descriptions, potential savings, and supporting references. 

Table 1. Energy reduction technologies 

 

This table draws from recent reviews and serves as the foundation for the screening and ranking in subsequent 

sections. 

3|Methodology 

3.1|Research Context 

This study employs a mixed-methods approach to identify, screen, and rank energy-consumption reduction 

technologies in the steel industry, with a particular focus on developing countries, including Iran. In the 

qualitative phase, a Systematic Literature Review (SLR) is utilized to compile a comprehensive set of energy-

saving technologies applicable to steel production in resource-constrained settings. This involves analyzing 

global and region-specific studies to ensure relevance to developing economies. In the quantitative phase, the 

FDM is applied, with an expert panel screening the identified technologies for suitability to the Iranian steel 

Technology Description Potential Energy Savings References 

Waste heat recovery 
systems 

Capture and reutilize heat from flue gases and 
cooling processes using organic Rankine cycles 
or preheaters. 

10-30% [9], [28–30] 

Hydrogen injection 

Inject hydrogen into blast furnaces as a 

reductant to minimize coke usage and CO₂ 
emissions. 

20-40% [30–32] 

Continuous casting 
improvements 

Enhance casting efficiency through near-net-
shape casting, reducing the need for reheating. 

15-25% [33–35] 

Thin-slab casting 
Produce thinner slabs directly from liquid steel, 
minimizing energy in rolling mills. 

20-35% [36], [37] 

Biomass Co-firing 
Co-inject biomass with coal in furnaces to 
partially replace fossil fuels. 

10-20% [38–40] 

Advanced process 
controls 

Implement AI-driven controls for optimizing 
furnace operations and energy flows. 

5-15% [41], [42] 

Scrap recycling 
enhancements 

Improve scrap preheating and sorting to 
increase EAF efficiency. 

15-30% [43], [44] 
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  industry. During this process, some technologies may be excluded, while others may be added based on expert 

consensus and contextual factors. To rank the screened technologies under uncertainty, the Interval Type-2 

Fuzzy Best-Worst Method (IT2-FBWM) is employed, providing a robust multi-criteria decision-making 

framework that effectively handles vagueness and imprecision in expert judgments. The detailed methodology 

is outlined below. 

3.2|Fuzzy Delphi Method 

The Delphi method seeks to establish expert agreement on a particular subject by conducting several rounds 

of anonymous surveys, gathering insights from a chosen panel of professionals who possess expertise and 

experience in a specific domain. Nevertheless, the conventional Delphi approach faces challenges such as 

uncertainty and a time-intensive process [45]. 

To address these challenges, the FDM was created by combining fuzzy theory with the traditional Delphi 

approach. As a collaborative decision-making tool, the FDM emphasizes anonymity, consensus-building, 

controlled feedback, and the synthesis of participants’ responses using linguistic preferences, making it highly 

effective for predicting outcomes [46]. 

The process for applying the FDM involves the following steps [47]: 

Step 1. Perform a literature review to pinpoint and gather pertinent criteria for the research issue. 

Step 2. Experts assess the selected criteria through a fuzzy Delphi questionnaire to evaluate their significance. 

Linguistic terms (as presented in Table 2) are employed to articulate the importance of each criterion. 

Triangular fuzzy numbers (TFNs) are chosen for their simplicity and prevalent use in research. A triangular 

fuzzy number F=(l,m,u) comprises three components: the lower bound l, denoting the smallest possible value; 

the upper bound u, representing the largest possible value; and the most probable value m. 

Table 2. Triangular fuzzy numbers of the 5-degree Likert scale. 

 

 

 

 

 

Step 3. The definitive set of criteria is established by comparing each criterion's weight against a 

predetermined threshold. The weight for each criterion is computed using the equations provided below: 

Where i represents the expert, n is the number of experts, j is the criterion, and m is the total number of 

criteria. 𝑎̃ represents the fuzzy value assigned to each criterion by an expert, and 𝜏̃ is the aggregated fuzzy 

value for each criterion. 

If the defuzzified value surpasses the established threshold (e.g., 0.7), the criterion is retained; otherwise, it is 

excluded. The threshold value may be set using different approaches, depending on expert agreement and the 

study's requirements. 

Linguistic Terms Fuzzy Number 
u m l 

VL 0.25 0 0 

L 0.5 0.25 0 

M 0.75 0.5 0.25 

H 1 0.75 0.5 

VH 1 1 0.75 

ãij = (lij, mij, uij) for i = 1…n; j = 1…m, (1) 

τ̃j = (lj, mj, uj) = (min{lij}, (∏ 

n

i=1

mij)

1
n

, max{uij}). (2) 

crisp value =  
l + m + u

3
. (3) 
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3.3. Interval Type-2 fuzzy BWM (IT2F-BWM) 

Interval type-2 fuzzy numbers build upon type-1 and type-2 fuzzy logic, offering an enhanced approach to 

modeling uncertainty in intricate decision-making scenarios. These fuzzy numbers are instrumental when the 

degree of membership is itself uncertain. Nonetheless, there is also a requirement to decrease computational 

complexity relative to complete type-2 fuzzy sets [48]. 

In type-1 fuzzy logic, every value is assigned a precise membership degree within the range [0,1]. In contrast, 

in type-2 fuzzy sets, the uncertainty in the membership function leads to each value having a secondary 

membership function. This characteristic enhances decision-making under uncertainty. However, the high 

computational complexity of full type-2 fuzzy sets restricts their broad adoption. To address this issue, interval 

type-2 fuzzy numbers were developed, where the secondary membership function is assigned a constant 

value, thereby defining a range of membership degree values for each element [49]. 

A key benefit of employing interval type-2 fuzzy numbers is their capacity to capture uncertainty in pairwise 

comparisons and qualitative evaluations more precisely. This characteristic is particularly valuable in multi-

criteria decision-making approaches where linguistic data and expert insights are central. By adopting this 

method, human judgments can be represented with greater accuracy, leading to more dependable outcomes 

[50]. 

In the fuzzy best-worst method, linguistic scales are commonly employed to compare inherently uncertain 

criteria. Utilizing interval type-2 fuzzy sets within BWM facilitates a more precise representation of ambiguity 

in expert opinions, especially when there are notable differences in perspectives. 

The following steps outline the structured process of IT2F-BWM [51]: 

Step 1. Selecting the best and worst criteria 

Specialists determine the most significant (best) and least significant (worst) criteria from the chosen set. 

Table 3. FOU data linguistic terms. 

 

 

 

 

 

 

Step 2. Pairwise comparisons using interval Type-2 fuzzy numbers 

Experts provide linguistic evaluations to compare the best criterion against all other criteria and all criteria 

against the worst criterion using interval type-2 fuzzy numbers. 

The obtained IT2F best-to-others (IT2FBO) and IT2F others-to-worst (IT2FOW) vectors are: 

Clearly, ÃBB = ÃWW = [(1,1,1,1), (1,1,1)]. 

The definition of a consistent IT2F preference (IT2FP) is as follows: 

The IT2FP 𝐴𝑗𝑘̃ is consistent if 

 

 U    L   Centroids M 

EI 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 
VI 1.0000 1.000 1.718 2.617 1.000 1.073 1.927 1.3105 1.6489 
MI 1.4308 2.350 2.800 3.397 2.517 2.694 3.083 2.2339 2.9247 
MP 2.1515 3.000 3.850 4.811 3.355 3.537 3.828 2.8388 4.1499 
SI 3.3101 4.250 5.050 6.011 4.414 4.890 5.028 4.0868 5.2602 
SP 4.6893 5.500 6.200 6.949 5.638 5.889 6.062 5.3207 6.3536 
VS 5.9686 6.750 7.100 8.231 6.717 6.889 7.104 6.5486 7.4660 
VVS 7.0136 7.650 8.000 8.707 7.517 7.813 8.083 7.5781 8.0816 
EX 7.0253 8.862 9.000 9.000 8.868 8.991 9.000 7.9099 8.9506 

ÃB  = (ÃB1, ÃB2, … , ÃBn), (4) 

ÃW  = (ÃW1, ÃW2, … , ÃWn). (5) 

ABest ,j
˜ × Ãjk = ABest ,k

˜ , Alk˜ × Ak, Worst ˜ = AjW˜ , j, k ∈ N. (6) 



 Ranking of energy consumption reduction technologies in the steel industry in developing countries  

 

264

 

  Step 3. Constructing the IT2F-BWM model 

The obtained fuzzy comparisons are used to formulate a set of optimization equations to determine the 

optimal weight vector. 

where 

To avoid obtaining multiple optimal solutions from the model, one can minimize the maximum absolute gaps 

between |
𝑤‾𝐵

𝑤‾ 𝑗
× 𝐴‾𝐵𝑗| and |

𝑤‾ 𝑗

𝑤‾𝑤
× 𝐴‾𝑗𝑤|. To solve the model under the assumption that the maximum absolute 

gap is 𝛿‾∗ = [(𝛿∗, 𝛿∗, 𝛿∗, 𝛿∗), (𝛿∗, 𝛿∗, 𝛿∗), the model can be transformed through the following programming 

model: 

Step 4. Solving the optimization model 

The objective function minimizes the maximum deviation between the pairwise comparisons and the 

calculated weights, ensuring consistency in expert judgments. 

Step 5. Defuzzification and normalization 

The final interval type-2 fuzzy weights are defuzzified and normalized to obtain crisp weights for decision-

making. 

 

 

minmax{|w̃B/w̃W = A‾Bj|, |w‾ j/w‾W = A‾ jw|}, 

s.t. 

{
 
 
 
 

 
 
 
 ∑ 

n

j=1

 C(w̃j) = 1

wj1
U ≤ wj1

L , wj3
L ≤ wj4

U

wj1
L ≤ wj1

L ≤ wj3
L

wj1
U ≤ wj2

U ≤ wj3
U ≤ wj4

U

wj1
U ≥ 0, j = 1,2,… , n,

 

 

w‾ B = [(w‾ B1
U , w‾ B2

U , w‾ B3
U , w‾ B4

U ), (w‾ B1
L , w‾ B2

L , w‾ B3
L )], w‾ j =

[(w‾ J1
U , w‾ J2

U , w‾ J3
U , w‾ J4

U ), (w‾ J1
L , w‾ J2

L , w‾ J3
L ),w‾ w[(w‾W1

U , w‾W2
U , 

w‾W3
U , w‾W4

U ), (w‾W1
L , w‾W2

L , w‾W3
L )], A‾B.J = [(w‾ B.J1

U , w‾ B.J2
U , w‾ B.J3

U , 

w‾ B.J4
U ), (w‾ B.J1

L , w‾ B.J2
L , w‾ B.J3

L )], A‾ J.W[(w‾ J.W1
U , w‾ J.W2

U , w‾ J.W3
U , 

w‾ J.W4
U ), (w‾ J.W1

L , w‾ J.W2
L , w‾ J.W3

L )]. 

 

s.t. 

{
 
 
 
 

 
 
 
 
|wB1

U −wJ1
UwBJ,1

U | ≤ δ, |wB2
U −wJ2

UwBJ,2
U | ≤ δ, |wB3

U −wJ3
UwBJ,3

U | ≤ δ,

|wB4
U −wJ4

UwBJ,4
U | ≤ δ, |wB1

L −wJ1
L wBJ,1

L | ≤ δ, |wB2
L −wJ2

L wBJ,2
L | ≤ δ,

|wJ3
U −wW3

U wJW,3
U | ≤ δ, |wJ4

U −wW1
U wJW,4

U | ≤ δ, |wJ1
L −wW1

L wJW,1
L | ≤ δ,

|wJ2
L −wW2

L wJW,2
L | ≤ δ, |wJ3

L −wW3
L wJW,3

L | ≤ δ,∑  

n

j=1

C(w̃j) = 1,

wj1
U ≤ wj1

L , wj3
L ≤ wj4

U , wj1
U ≤ wj2

U ≤ wj3
U ≤ wj4

U , wj1
U ≥ 0, j = 1,2, … , n.
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Step 6. Consistency check 

The consistency of expert judgments is evaluated to ensure reliable weight calculations. The CR inspects the 

degree of consistency and the reliability of the obtained weights through: 

The value of CR ranges from 0 to 1, where a CR approaching 0 signifies higher consistency, while a CR closer 

to 1 indicates lower consistency. [51]. 

Table 4. Consistency index for the IT2F-BWM. 

 

 

4|Findings 

In this study, the Fuzzy Delphi questionnaire was meticulously designed. According to scholarly references, 

implementing the FDM requires a minimum of 5 experts, with an optimal range of 5 to 20 participants; 

however, using a larger pool is advisable when additional experts are available 48].In this study, the 

questionnaire was distributed to 12 experts specializing in energy efficiency technologies and the steel 

industry, and their responses were systematically collected. The Fuzzy Delphi process was conducted over 

three rounds, after which it was halted, as the difference in the defuzzified values of the criteria between the 

two stages was less than 0.2, indicating sufficient convergence [52]. With a threshold of 0.7, 7 of the 7 

proposed technologies were validated by the experts. 

In addition to these technologies, "Smart Energy Management Systems with Predictive Capabilities" was also 

proposed. However, due to factors such as the target country's technology readiness, implementation costs, 

and the need for advanced digital infrastructure, the experts rejected this technology. In developing countries, 

where technological and infrastructural limitations may exist, challenges for implementing these systems are 

present. However, if feasible, this technology could significantly reduce energy consumption and improve 

productivity. 

Table 5. Expert Panel Information. 

 

 

 

 

 

 

 

 

Table 6. FDM results. 

 

 

 

 

 

CR = δ∗/CI. (7) 

LTs EI WI MI MP SI SP VS WS EX 

Centroids 1.000 1.7751 3.3551 4.3403 5.7189 6.5494 7.3902 8.3475 8.4302 
CI 0 0.1882 0.7537 1.3038 2.0756 2.8840 3.7304 4.3412 4.7937 

No Gender Degree Specialization Work Experience (Years) 

1 Male PhD Energy efficiency technologies, the steel industry 12 
2 Female MSc Energy efficiency, steel production 10 
3 Male PhD Steel industry, process optimization 15 
4 Female MSc Energy management, industrial engineering 8 
5 Male PhD Environmental engineering, energy efficiency 13 
6 Female MSc Energy systems, steel industry 9 
7 Male PhD Energy efficiency, renewable energy 14 
8 Female MSc Industrial energy, steel production 11 
9 Male MSc Steel manufacturing, energy efficiency 10 
10 Male MSc Energy technology, sustainable steel production 16 
11 Male PhD Steel industry, energy optimization 12 
12 Male MSc Energy systems, carbon footprint reduction 14 

Technology Symbol L M U Defuzzification Acceptance 

Waste heat recovery systems T1 0.25 0.900 1 0.762 Accepted 
Hydrogen injection T2 0.25 0.858 1 0.741 Accepted 
Continuous casting improvements T3 0.5 0.909 1 0.829 Accepted 
Thin-Slab Casting T4 0.5 0.887 1 0.819 Accepted 
Biomass Co-Firing T5 0.25 0.837 1 0.731 Accepted 
Advanced process controls T6 0.25 0.829 1 0.727 Accepted 
Scrap recycling enhancements T7 0.25 0.870 1 0.747 Accepted 
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  Using the opinions of experts who held PhD degrees and solving the resulting models using the Best-Worst 

Fuzzy Type-2 method, the weight intervals for all technologies, along with the consistency ratio, were 

obtained and are shown in Table 7. 

Table 7. Optimal weights of technologies calculated through the IT2F-BWM. 

 

 

 

 

 

 

 

 

5|Conclusion 

The findings of this study provide a robust framework for prioritizing energy consumption reduction 

technologies in the steel industry of developing countries, with a specific focus on Iran. By integrating the 

FDM and the Interval Type-2 Fuzzy Best-Worst Method (IT2F-BWM), this research addresses critical gaps 

in the literature by offering a context-sensitive, uncertainty-aware approach to technology prioritization. The 

validated portfolio of seven energy-efficient technologies, as confirmed through the FDM process, balances 

technological feasibility, economic viability, and environmental impact, tailored to the resource-constrained 

settings of developing economies. 

The Fuzzy Delphi process, conducted over three rounds with a panel of 12 experts, ensured rigorous 

screening of technologies. The convergence of expert opinions, with defuzzified values stabilizing within a 

0.2 margin, underscores the reliability of the selected technologies. Notably, the exclusion of "Smart Energy 

Management Systems with Predictive Capabilities" highlights a critical insight: while advanced digital 

technologies hold transformative potential, their adoption in developing countries is often hindered by 

infrastructural limitations, high implementation costs, and insufficient technological readiness. This finding 

aligns with prior studies [23], [24], which emphasize economic and technological barriers as key impediments 

to energy efficiency adoption in emerging markets. However, it also suggests an opportunity for future 

investments in digital infrastructure to unlock the potential of such systems, particularly as developing 

economies progress toward Industry 4.0. 

The IT2F-BWM results, as presented in Table 8, provide a nuanced ranking of the seven validated 

technologies based on their weighted importance. The use of interval type-2 fuzzy sets in the BWM 

framework effectively captures the epistemic uncertainty inherent in expert judgments, thereby offering a 

methodological advancement over traditional deterministic approaches such as the Analytic Hierarchy 

Process (AHP) [11], [12]. The consistency ratio (CR) values, ranging from 0 to 1, indicate high reliability in 

the derived weights, reinforcing the robustness of the ranking process. Technologies such as waste heat 

recovery systems and hydrogen injection in blast furnaces emerged as high-priority options, reflecting their 

potential for significant energy savings (10-50% as noted in [10]) and alignment with global decarbonization 

goals [26]. These findings are particularly relevant for developing countries, where the dominance of energy-

intensive BOF routes necessitates scalable, cost-effective solutions. 

From a policy perspective, the ranking offers actionable insights for stakeholders in developing economies. 

For instance, waste heat recovery systems, which capture and reuse thermal energy from exhaust gases, 

present a relatively low-cost, high-impact solution that can be integrated into existing infrastructure with 

minimal disruption. This is critical in contexts like Iran, where capital constraints and outdated equipment are 

prevalent [17]. Similarly, hydrogen injection, while requiring greater initial investment, aligns with long-term 

sustainability objectives, such as the United Nations Sustainable Development Goals (SDGs), by reducing 

Technology Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Final Weight Rank 

T1 0.213 0.323 0.206 0.212 0.209 0.231 2 
T2 0.369 0.323 0.356 0.372 0.356 0.357 1 
T3 0.116 0.098 0.112 0.115 0.114 0.111 3 
T4 0.080 0.068 0.112 0.080 0.074 0.082 5 
T5 0.037 0.031 0.035 0.036 0.043 0.036 7 
T6 0.093 0.078 0.090 0.090 0.088 0.089 4 
T7 0.093 0.078 0.090 0.092 0.114 0.093 6 
k 0.128 0.108 0.123 0.122 0.095 0.095  
CR 0.034 0.029 0.033 0.028 0.026 0.026  



 Eskandari Mehrabadi and Bayatzadeh |Opt. 2(4) (2025) 257-270 

 

267

 

  
reliance on fossil fuels. However, its implementation demands supportive policies, including subsidies for 

research and development and international collaborations to access cutting-edge technologies [25]. 

The study also reveals trade-offs in technology adoption. For example, while advanced process controls 

powered by AI and IoT offer real-time optimization, their deployment is challenged by the need for skilled 

labor and robust digital infrastructure [27]. In contrast, material efficiency technologies like thin-slab casting 

require less technological sophistication but may face supply chain vulnerabilities in developing countries [11]. 

These trade-offs underscore the importance of context-specific prioritization, as generic solutions often fail 

to account for local constraints such as fluctuating energy prices or regulatory inconsistencies [18], [19]. By 

employing fuzzy logic, this study mitigates such limitations, offering a decision-support tool that is both 

flexible and precise. 

Despite its contributions, this research has limitations. The focus on Iran as a case study, while providing 

depth, may limit generalizability to other developing countries with different industrial structures or policy 

environments. Additionally, the exclusion of emerging technologies like Carbon Capture and Storage (CCS) 

due to cost and readiness barriers suggests a need for future research to explore their long-term viability as 

infrastructure improves. The reliance on a 12-expert panel, while sufficient for FDM [48], could be expanded 

to include diverse stakeholders, such as policymakers and industry practitioners, to enhance the robustness 

of the findings. 

The implications of this study extend beyond academia to inform practical decision-making. For 

policymakers, the ranked technologies provide a roadmap for targeted investments and incentives, such as 

tax breaks for waste heat recovery or grants for hydrogen-based innovations. For industry leaders, the findings 

highlight the need for capacity-building programs to address skill gaps and foster technology adoption. 

Internationally, the methodology can serve as a blueprint for other developing nations seeking to balance 

industrial growth with environmental sustainability. Future research should explore dynamic modeling to 

account for evolving technological and economic conditions, as well as cross-country comparisons to identify 

best practices in energy efficiency adoption. 

In conclusion, this study advances the discourse on energy efficiency in the steel industry by offering a 

systematic, uncertainty-aware approach to technology prioritization. The integration of FDM and IT2F-BWM 

not only addresses methodological gaps but also provides a practical tool for stakeholders in developing 

countries. By aligning technological solutions with local constraints and global sustainability goals, this 

research contributes to the broader agenda of sustainable industrial development. 
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