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Abstract

The Diophantine equation under consideration to find the non-zero integral solution are of the type
x2 = (Rp)y2 − (R1)t which represents a very general type of negative Pell’s equation formed using
Ramanujan primes as coefficients. The equation are all formed using the first 10 Ramanujan primes
2,11,17,29,41,47,59,67,71 & 97. Fixing the 1st Ramanujan prime R1 = 2, we seek for solutions of Pell’s
equation with coefficients Rp, where Rp denotes the pth Ramanujan prime.
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1|Introduction
The Diophantine equation x2 − Dy2 = 1, also known as Pell’s equation, is known to have an infinite number of
integer solutions for any square - free positive integer D > 1 [2]. The solutions stem from a single fundamental
solution found in Algebraic Number Theory. Brahmagupta and Bhaskara were the first to study the classical
Pell’s equation, and Lagrange developed the entire theory.There are an infinite number of integer solutions (xn, yn)
to Pell’s equation x2 −Dy2 = ±1 for n ≥ 1. Since all other solutions to this equation can be (easily) derived from
the first non-trivial positive integer solution (x1, y1) (in this case, x1 or x1 + y1

√
D is minimum), it is known as

the fundamental solution. Let x2 − Dy2 = 1 have a fundamental solution (x1, y1). Then, for any integer n ≥ 2,
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the n-th positive solution of this equation, (xn, yn), is defined by the equality xn + yn

√
D = (x1 + y1

√
D)n.The

corresponding negative Pell’s equation,
x2 − Dy2 = −1, (1)

is considerably more mysterious. For (1) to be solvable in integers, it is required that D ≡ 1 or 2 (mod 4), and
that all odd prime divisors of D have forms that are congruent to 1 modulo 4. These conditions, however, do not
guarantee the existence of a solution. One may visit A031396 in the OEIS [16] for some known numbers D =
2, 5, 10, 13, 17, 26, 29, 37, 41, 50, ... such that (1) is solvable in integers x and y.For several decades, certain
number theorists have been committed to developing standards for the solvability of (1). A few requirements are
listed in [2, 10, 11, 17]. According to Newman’s [11] demonstration, (1) can be solved in integers if D =

∏r
i=1 pi,

where r = 2 or r is odd, and pi’s are primes congruent to 1 modulo 4 and satisfy
(

pi

pj

)
= −1 for all 1 ≤ i, j ≤ r

with i ̸= j. The standard Jacobi symbol is
( .

.

)
in this case. Conversely, Mollin [10] found a relationship between

x2 − Dy2 = 1 and the negative Pell’s equation (1).
He demonstrated that (1) can be solved in integers x and y if and only if x0 ≡ −1 (mod 2D) is satisfied by
the fundamental solution (x0, y0) of x2 − Dy2 = 1. Despite the significance of these findings, their approaches
are constrained if D ≫ 1. For instance, there are numerous situations where the fundamental solutions are
fairly large. Thus, extensive computations are required to verify these conditions. Positive Pell’s equations have
recently been found to have well-known solvability criteria. A primitive Pythagorean triple for D can be found
by using the length of its period as a guide. Another method is to compute the simple continued fraction of√

D.[18-20]
A prime number that satisfies a result about the prime-counting function proved by Srinivasa Ramanujan is
known as a Ramanujan prime in mathematics. As he points out, Bertrand’s postulate was initially proven by
Chebyshev. Ramanujan presented a revised demonstration of the concept in 1919. Ramanujan arrived to a
generalized result at the end of the two-page published work. Consequently, 2, 11, 17, 29, and 41 are the initial
five Ramanujan primes.

Take note that Rn must be a prime number in order for it to exist:π(x) − π
(x

2

)
and, hence,π(x) must increase

by obtaining another prime at x = Rn. Since π(x) − π
(x

2

)
can increase by atmost 1,π(Rn) − π

(
Rn

√
D = (x1 + y1

√

2

)
= n. In

this paper the negative Pell’s equation x2 = (Rp)y2 − (R1)t formed using the pth Ramanujan prime Rp, are
analysed for obtaining non-zero integer solution for various choice of t and are illustrated for primes less then
100.

2|Preliminaries
Theorem 0.1. If x1, y1 is the fundamental solution of x2 − Dy2 = 1,then every positive solution of the equation
is given by xn, yn where xn and yn are the integers determined from xn + yn D)n, n = 1, 2, 3 · · ·

For illustration,consider the fundamental solution x1 = 24 & y1 = 5 of
x2 − 23y2 = 1. A second positive solution (x2, y2) can be obtained from the formula

x2 + y2
√

23 = (24 + 5
√

23)2 = 1151 + 240
√

23

This gives x2 = 1151, y2 = 240.These integers also satisfy the equation
x2 − 23y2 = 1,since 11512 − 23y2 = 1.
∴ Any positive solution can be calculated using the Theorem 2.1.

Theorem 0.2. Suppose that the equation
x2 − Dy2 = −1 (2)

has solution in positive integers and (x0, y0) be its minimal solution.The general solution to (2) is given by
(xn, yn)n≥0 where xn = x0un +Dy0vn,yn = y0un +x0vn and (un, vn)n≥0 is the general solution to Pell’s equation
u2 − Dv2 = 1.
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Theorem 0.3. Let p be a prime. The negative Pell’s equation x2 − py2 = −1 is solvable if and only if p = 2 or
p ≡ 1 (mod 4).

2.1 Testing the solubility of the negative Pell’s equation
Suppose D is a positive integer and not a perfect square. Then the negative Pell’s equation x2 − Dy2 = −1 is
soluble if and only if D is expressible as
D = a2 + b2, gcd(a, b) = 1, a and b positive, b odd and the Diophantine equation −bv2 + 2avw + bw2 = 1 has a
solution(the case of solubility occurs for exactly one such (a,b)) .
The Algorithm
( 2.1.1 ). Find all expressions of D as a sum of two relatively prime squares using cornacchia’s method.If none
exist, the negative Pell’s equation is not soluble.
(2.1.2). For each representation D = a2 + b2,gcd(a, b) = 1, a and b positive, b odd,test the solubility of
−bv2 + 2avw + bw2 = 1 using Lagrange-Matthews algorithm.If solutions exist,the negative Pell’s equation is
soluble.
(2.1.3). If each representation yields no solution,then the negative Pell’s equation is insoluble.

3|Main Results
The equation under consideration in the negative Pell’s equation x2 = (Rp)y2 − (R1)t, where Rp denotes the pth

Ramanujan prime and R1 = 2,the first Ramanujan Prime.
System-I: Diophantine equation x2 = 11y2 − 2t,with R2 = 11 and R1 = 2.
This system concerns with negative Pell’s equation x2 = 11y2 − 2t, t ∈ N .Here the prime R2 = 11 cannot
be expressed as the sum of two relatively prime squares.Thus by the condition (2.1.1) of the algorithm,the
negative Pell’s equation x2 − 11y2 = −1 is not soluble. Thus we can conclude that the negative Pell’s equation
x2 = 11y2 − 2t is insoluble.
System-II: Diophantine Equation x2 = 17y2 − 2t with R3 = 17, R1 = 2.
The prime R3 = 17 satisfies all the conditions of Theorem 2.3,and hence we conclude that the negative Pell’s
equation x2 = 17y2 − 2t,t ∈ N is solvable and infinitely many positive integer solutions are obtained for the
various choices of t.The more general Pell’s equation

u2 = 17v2 + 1 (I)
can be viewed and its general solution (un, vn) is given by

un = 1
2fn; vn = 1

2
√

17
gn, (II)

where fn = (33 + 8
√

17)n + (33 − 8
√

17)n

gn = (33 + 8
√

17)n − (33 − 8
√

17)n

Choice-I: t is an even number
Case 1:t=2,
The Pell’s equation under consideration is

x2 = 17y2 − 4 (3)
with the initial solution x0 = 8; y0 = 2.Applying Theorem 2.2, a series of non-zero integer solutions to (3) are
discovered as
xn = 1

2[8fn + 2
√

17gn]

yn = 1
2
√

17
[2

√
17fn + 8gn] ,where fn and gn are defined as in (II)

The recurrence relations satisfied by the solutions of (3) are given by
xn+2 − 66xn+1 + xn = 0
yn+2 − 66yn+1 + yn = 0
Case 2:t = 2k + 2, where 1 ≤ k ≤ 7,
The Pell’s equation thus obtained is

x2 = 17y2 − 22k+2 (4)
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with initial solution x0 = 2k−1, y0 = 2k−1.Applying Brahmagupta lemma between the solutions(x0, y0) and
(un, vn) from (II),the sequence of non-zero distinct integer solutions to (4) are obtained as

xn = 2k−1

2 [fn +
√

17gn]

yn = 2k−1

2
√

17
[
√

17fn + gn].

Case 3: t=2k+16, k ∈ N
Consider

x2 = 17y2 − 22k+16 (5)
with initial solution x0 = 59(2k−1), y0 = 125(2k−1)
Applying Theorem 2.2, and using (II) we get infinite number of solutions to (5) as

xn = 2k−1

2 [59fn + 125
√

17gn]

yn = 2k−1

2
√

17
[125

√
17fn + 59gn].

Choice-II: t is an odd number
Case 1: t = 2k + 1, 1 ≤ k ≤ 4
The Pell’s equation to be solved is

x2 = 17y2 − 22k+1 (6)
The following table represents various values of t with the initial & general solutions to (6).

t = 2k + 1 (x0, y0) (xn, yn)
k = 1 (3,1) xn = 1

2[3fn +
√

17gn] ; yn = 1
2
√

17
[
√

17fn + 3gn]

k = 2 (6,2) xn = 1
2[6fn + 2

√
17gn] ; yn = 1

2
√

17
[2

√
17fn + 6gn]

k = 3 (5,3) xn = 1
2[5fn + 3

√
17gn] ; yn = 1

2
√

17
[3

√
17fn + 5gn]

k = 4 (10,6) xn = 1
2[10fn + 6

√
17gn] ; yn = 1

2
√

17
[6

√
17fn + 10gn]
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Case 2: t=2k+9, k ∈ N
The Pell’s equation thus obtained is

x2 = 17y2 − 22k+9 (7)
Let (x0, y0) be the initial solution of (7)given by x0 = 3(2k−1), y0 = 11(2k−1).
Applying Theorem 2.2, a series of non-zero integer solution to (7) are discovered as

xn = 2k−1

2 [3fn + 11
√

17gn]

yn = 2k−1

2
√

17
[11

√
17fn + 3gn], where fn and gn are defined as in (II).

The recurrence relations satisfied by the solutions of (7) are given by
xn+2 − 66xn+1 + xn = 0
yn+2 − 66yn+1 + yn = 0
System -III: Diophantine Equation x2 = 29y2 − 2t with R4 = 29, R1 = 2.
Given that R4 = 29 satisfies all the settings of Theorem 2.3,we can conclude that the negative Pell’s equation
x2 = 29y2 − 2t is solvable in integers.
Consider the case when t is an even number.
In this case,the Pell’s equation is

x2 = 29y2 − 22k (8)
Let (x0, y0) be the primary solution of (8) specified by x0 = 5(2k−1), y0 = 2k−1. Analysing the pell’s equation
u2 = 29v2 + 1 to discover the additional solutions to (8), whose generic solution (un, vn) is provided by
un = 1

2fn; vn = 1
2
√

29
gn

where fn = (9801 + 1820
√

29)n + (9801 − 1820
√

29)n

gn = (9801 + 1820
√

29)n − (9801 − 1820
√

29)n

Applying Brahmagupta lemma between the solutions(x0, y0) and (un, vn),the sequence of non-zero distinct
integer solutions to (8) are obtained as

xn = 2k−1

2 [5fn +
√

29gn]

yn = 2k−1

2
√

29
[
√

29fn + 5gn].

The recurrence relations fulfilled by the solutions of (8) are specified by
xn+2 − 1960xn+1 + xn = 0
yn+2 − 1960yn+1 + yn = 0
Observation:This system fails to generate integer solutions for all the odd choices of t.
System-IV:Diophantine Equation x2 = 41y2 − 2t with R5 = 41, R1 = 2.
For this particular equation,we consider the prime 41.Using the Algorithm and testing with
(a, b) = (4, 5),−bv2 + 2avw + bw2 = 1 has a solution (v, w) = (2, 1).Therefore,we can develop this discussion by
confirming that the negative pell equation x2 = 41y2 − 2t.t ∈ N is solvable in integers.
Consider the pellian equation

u2 = 41v2 + 1 (III)
whose general solution (un, vn) is given by

un = 1
2fn; vn = 1

2
√

41
gn (IV)

where fn = (2049 + 320
√

41)n + (2049 − 320
√

41)n

gn = (2049 + 320
√

41)n − (2049 − 320
√

41)n

Choice-1: t is an even number
case 1: t=2
The Pell’s equation to be checked for its solutions is

x2 = 41y2 − 4 (9)
Assume (x0, y0) be the fundamental solution of (9) given by x0 = 64, y0 = 10
Applying Theorem 2.2, a collection of nonzero different integer solutions to (9) is achieved as
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xn = 1
2[64fn + 10

√
41gn]

yn = 1
2
√

41
[10

√
41fn + 64gn].

The recurrence relation derived by employing the solutions are
xn+2 − 4098xn+1 + xn = 0
yn+2 − 4098yn+1 + yn = 0.
Case2: t = 2k + 2, 1 ≤ k ≤ 3
Consider

x2 = 41y2 − 22k+2 (10)

Let (x0, y0) represent the first solution to (10) proposed by x0 = 5(2k−1), y0 = 2k−1

Applying Brahmagupta Lemma between (x0, y0) and (un, vn) from (IV),the series of different non-zero integer
solutions are discovered as
xn = 2k−1

2 [5fn +
√

41gn]

yn = 2k−1

2
√

41
[
√

41fn + 5gn].

Case 3: t = 2k + 8, k ∈ N
The Pell’s equation is

x2 = 41y2 − 22k+8 (11)

Let (x0, y0) represent the initial solutions to (11) offered by x0 = 2k−1, y0 = 5(2k−1)
Applying Brahmagupta Lemma between (x0, y0) and (un, vn) from (IV),the sequence of non-zero distinct integer
solutions to (11) are obtained as

xn = 2k−1

2 [fn + 5
√

41gn]

yn = 2k−1

2
√

41
[5

√
41fn + gn].

Choice-2: t is an odd number
Case 1: t=3
Consider

x2 = 41y2 − 23 (12)

Applying Theorem 2.2 ,a collection of nonzero different integer solutions to (12) are achieved as
xn = 1

2[19fn + 3
√

41gn]

yn = 1
2
√

41
[3

√
41fn + 19gn].

Case 2: t = 2k + 3, k ∈ N
The Pell’s equation to be examined is

x2 = 41y2 − 22k+3 (13)

Applying Brahmagupta Lemma between (x0, y0) and (un, vn) from (IV),the sequence of non-zero distinct integer
solutions to (13) are obtained as

xn = 2k−1

2 [3fn +
√

41gn]

yn = 2k−1

2
√

41
[
√

41fn + 3gn].

System-V
In this system, we consider the Ramanujan primes R6 = 47, R7 = 59, R8 = 67 and R9 = 71.We form Pell’s
equations x2 = 47y2 − 2t, x2 = 59y2 − 2t, x2 = 67y2 − 2t and x2 = 71y2 − 2t.All these primes fail to satisfy the
conditions of Theorem 2.3 and thus we conclude that, the above equations so formed does not possess integer
solutions.
System-VI Diophantine Equation x2 = 97y2 − 2t with R10 = 97, R1 = 2.
We consider the prime 97 in support of this precise equation. Given that 97 meets every requirement of Theorem
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2.3,we can come to the conclusion that negative the Pell’s equation x2 = 97y2 − 2t is solvable.The more general
Pell’s equation

u2 = 97v2 + 1 (V)

can be viewed and its general solution (un, vn) is given by

un = 1
2fn; vn = 1

2
√

97
gn, (VI)

where fn = (62809633 + 6377352
√

97)n + (62809633 − 6377352
√

97)n

gn = (62809633 + 6377352
√

97)n − (62809633 − 6377352
√

97)n

Choice-1:t is an even number.
Case 1: t=2
The Pell’s equation so generated is

x2 = 97y2 − 4 (14)
Let (x0, y0) represent the initial solution to (14) offered by x0 = 11208, y0 = 1138.Applying Brahmagupta Lemma
between (x0, y0) and (un, vn) from (VI),the sequence of non-zero distinct integer solutions to (14) are obtained as
xn = 1

2[11208fn + 1138
√

97gn]

yn = 1
2
√

97
[1138

√
97fn + 11208gn].

Case 2: t = 2k + 2, k = 1, 2, 3, 4, 5
Consider

x2 = 97y2 − 22k+2 (15)
The sequence of non-zero distinct integer solutions to (15) are obtained as

xn = 2k−1

2 [9fn +
√

97gn]

yn = 2k−1

2
√

97
[
√

97fn + 9gn].

Case 3: t=14
Using Theorem 2.2,the general solution to x2 = 97y2 − 214 is given by
xn = 1

2[3fn + 13
√

97gn]

yn = 1
2
√

97
[13

√
97fn + 3gn].

Case 4: t = 2k + 14, k ∈ N
The Pell’s equation is

x2 = 97y2 − 22k+14 (16)
has solutions in positive integer and let (6(2k−1), 26(2k−1)) be its minimal solution.The general solution to (16)is
given by (xn, yn) where

xn = 2k−1

2 [6fn + 26
√

97gn]

yn = 2k−1

26
√

97
[26

√
97fn + 6gn].

Choice-2:t is an odd number
Case 1: t=3,5,7
The Pell’s equation is

x2 = 97y2 − 2t (17)
The following table represents various values of t with the initial & general solutions to (17).

Case 2: t = 2k + 7, k ∈ N
The Pell’s equation is

x2 = 97y2 − 22k+7 (18)
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t (x0, y0) (xn, yn)
3 (325,33) xn = 1

2[325fn + 33
√

97gn] ; yn = 1
2
√

97
[33

√
97fn + 325gn]

5 (29,3) xn = 1
2[29fn + 3

√
97gn] ; yn = 1

2
√

97
[3

√
97fn + 29gn]

7 (58,6) xn = 1
2[58fn + 6

√
97gn] ; yn = 1

2
√

97
[6

√
97fn + 58gn]

with initial solution x0 = 19(2k−1),y0 = 3(2k−1).Applying Brahmagupta lemma between (x0, y0) and (un, vn)
from (VI), the progression of non-zero different integer solutions to (18) is found to be

xn = 2k−1

2 [19fn + 3
√

97gn]

yn = 2k−1

2
√

97
[3

√
97fn + 19gn].

4|Conclusion
In this paper, the equations are all formed restricting the primes less than 100. It can be extended to any bound
and also to any prime number and thus delve into the world of Pell’s equations.
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