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Abstract

A fuzzy set assigns to each element of a universe a membership degree within the interval [01] , thereby modeling
imprecision and vagueness. A hyperfuzzy set extends this concept by associating each element with a nonempty
subset of [01] , capturing both uncertainty and variability through a range of possible membership degrees. Building
on this, a superhyperfuzzy set generalizes the framework further by assigning to each nonempty element in the=
th power-set hierarchy a nonempty subset of [01] , thus enabling the representation of recursively structured and
hierarchical uncertainty.
Linear programming is an optimization technique that aims to maximize or minimize a linear objective function
subject to a set of linear equality and inequality constraints. Fuzzy linear programming generalizes this framework
by incorporating fuzzy numbers into the objective coeflicients and constraints, allowing for uncertainty in both
parameters and feasible regions.
In this paper, we propose mathematical models for Hyperfuzzy Linear Programming and Superhyperfuzzy Linear
Programming, and briefly examine their theoretical properties. We hope that these models will provide a foundation
for further validation, development, and refinement in future research.
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1|Preliminaries

This section provides an overview of the fundamental concepts and definitions essential for the discussions in this paper. In
this paper, all sets are assumed to be finite.

1.1|Hyperfuzzy Set and the SuperHyperfuzzy Set

A fuzzy set assigns to each element in a universe a membership degree in the interval [01] , providing a mathematical
framework for representing imprecision and vagueness [1-4].
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Several advanced frameworks have been developed to extend or complement the classical fuzzy set theory. These include:
o Intuitionistic Fuzzy Sets [5-7], which assign both a membership and a non-membership degree to each element;
e Vague Sets [8—10], which refine the interpretation of uncertainty through intervals;

e Bipolar Fuzzy Sets [11-13], allowing positive and negative degrees of membership;

o Neutrosophic Sets [14—16], which incorporate degrees of truth, indeterminacy, and falsity;

e Neutrosophic Offsets [17, 18], which model deviation or offset from standard membership structures;

e Picture Fuzzy Sets [19-21], which include positive, neutral, and negative membership components;

o Hesitant Fuzzy Sets [22-24], which allow a set of possible membership values for each element;

¢ Quadri-Partitioned Neutrosophic Sets [25-27], which divide uncertainty into four interpretive components;
¢ Hyperneutrosophic Sets [28], which introduce a higher-order hierarchical structure to neutrosophic models;
o Plithogenic Sets [29-33], which generalize fuzzy sets by incorporating attribute contradiction degrees.

In this paper, we focus on the Hyperfuzzy Set [34—37] and its recursive generalization, the SuperHyperfuzzy Set [28,38],
both of which aim to capture more complex forms of uncertainty by introducing set-valued and hierarchical membership
degrees.

Definition 0.1 (Base Set). A base set S is the foundational set from which complex structures such as powersets and
hyperstructures are derived. It is formally defined as:

S = {x | x is an element within a specified domain}.

All elements in constructs like P (S) or £, (S) originate from the elements of S.

Definition 0.2 (Powerset). The powerset of a set S, denoted P (S), is the collection of all possible subsets of S, including
both the empty set and S itself. Formally, it is expressed as:

P(S)={A] A CS}.
Definition 0.3 (n-th Powerset). (cf. [39-42])

The n-th powerset of a set H, denoted P,,(H), is defined iteratively, starting with the standard powerset. The recursive
construction is given by:
Pi(H)=P(H), Pnn1(H)=PP,(H)), fornx>1.
Similarly, the n-th non-empty powerset, denoted P,;(H), is defined recursively as:
Pi(H) =P (H), P, (H) =P (P,(H)).
Here, P*(H) represents the powerset of H with the empty set removed.
Example 0.4 (Real-World Example of n-th Powerset). Let H be the set of basic ingredients for a simple recipe:
H = {tomato, cheese, basil}.
Then the first powerset
P1(H) = P(H)

is the collection of all possible ingredient combinations (including the empty set), for instance {tomato, basil} or {cheese},
each of which you can think of as a “recipe.”
The second powerset

Pa(H) = P (P1(H))
is the set of all possible “menus,” i.e. collections of recipes. For example,

{{tomato, basil}, {cheese}} € P>(H)

represents a menu that offers two recipes.

Finally, the third powerset
P3(H) = P(P>(H))



129 Fujitar | Opt. 2(3) (2025) 127-140

is the set of all possible “meal plans,” i.e. collections of menus—useful, for instance, when planning multi-day catering
events.

In general, the n-th powerset $, (H) models n-level hierarchical groupings in everyday planning tasks.

Definition 0.5 (Fuzzy set). [1,43] A fuzzy set T in a non-empty universe Y is a mapping 7 : ¥ — [0, 1]. A fuzzy relation on
Y isafuzzy subset 6 in Y X Y. If 7 is a fuzzy set in Y and ¢ is a fuzzy relation on Y, then ¢ is called a fuzzy relation on 7 if

6(y,z) <min{r(y),7(z)} forally,z €Y.

Definition 0.6 (Hyperfuzzy Set). [34-37,44] Let X be a non-empty universe. A hyperfuzzy set A on X is defined by a

mapping
a: X — f’([O, 1D,

where P([0, 1]) denotes the collection of all non-empty subsets of the interval [0, 1].

For each element x € X, ji(x) C [0, 1] represents the set of possible membership degrees of x in the set A. This formulation
allows for representing uncertainty or variability in the degree of membership, extending the classical fuzzy set (which
assigns a single real number in [0, 1]) to a set-valued interpretation.

Example 0.7 (Freshness Assessment via a Hyperfuzzy Set). Let X be the set of ingredients in a simple salad:
X = {tomato, cheese, basil}.

Three quality-control experts each give a fuzzy score in [0, 1] for the “freshness” of each ingredient. We model their
variability as a hyperfuzzy set F on X, where

fi(x) = {scores provided by the three experts for x} < [0, 1].
Concretely,
f(tomato) = {0.7, 0.8, 0.9}, ji(cheese) = {0.6, 0.85, 0.9}, f(basil) = {0.5, 0.75, 0.95}.

Here each set fi(x) captures the range of expert judgments on how “fresh” the ingredient x is, allowing us to represent
uncertainty and disagreement among evaluators.

Definition 0.8 (i, n-SuperHyperFuzzy Set). [28,45,46] Let X be a nonempty set and let m, n € Ny. Define the nonempty
k-th powerset of a set Y by

PrY)=Y, PY)=P(Pi_,(V))\{0}, k=1
In particular, ;;, (X) is the family of all nonempty elements of the m-th iterated powerset of X, and #;; ([0, 1]) is defined
analogously. Then an (m, n)-SuperHyperFuzzy Set on X is a function

fmn P (X) — Pr([0,1]), A = fima(A),

where #7([0, 1]) denotes the collection of all nonempty subsets of P, ([0,1]). Thus each A € P} (X) is assigned a
nonempty family of membership-degree sets i ,(A) € P, ([0, 1]), capturing hierarchical uncertainty across both the m-
and n-levels.

Example 0.9 (Project Team Performance via a (2, 2)-SuperHyperFuzzy Set). Let
X = {Yutaka, Masafumi, Shintaro}
,and take m = 2, n = 2. Then
P;(X) =P (P"(X)) \ {0},
so one representative element is
A = {{Yutaka, Masafumi}, {Masafumi, Shintaro}}
e P(X).
We assign to A a nonempty family of second-level membership sets by
fiz2(A) = {{{0.7, 0.75}, {0.8}},
L,
{{0.6}, {0.85, 0.90}}} < P;([0,1]).

L
Here:
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e Each inner set, for example {0.7,0.75}, consists of possible membership scores from one evaluation method (e.g.
quarterly metrics).

e The outer set {L;, Ly} captures two distinct evaluation scenarios (e.g. peer review vs. manager review).

Thus this (2, 2)-SuperHyperFuzzy Set models hierarchical uncertainty both in the team structure (level m = 2) and in the
membership-assessment process (level n = 2).

Example 0.10 (Supply Chain Reliability Assessment via a (2, 1)-SuperHyperFuzzy Set). Let X = {A, B, C} be a set of
suppliers, and take m = 2, n = 1. Then
P1(X) = {{A}, {B},{C},{A, B}, {A,C}, {B,C},{A, B,C}},
and
P;(X) =P (P (X)) \ {0},
SO one representative element is
A = {{A.B}, {B,C}} € P5(X),
which models two overlapping supply-chain partnerships. We assign to A a set of possible reliability scores by
f2.1(A) ={0.75, 0.85, 0.92} C 751*([0, 1)) = {all nonempty subsets of [0, 1]}.

Here each value represents the aggregate reliability (on-time delivery, defect-rate compliance, audit score, etc.) under
a different evaluation scenario. Thus this (2, 1)-SuperHyperFuzzy Set captures hierarchical uncertainty in the supplier
network structure (level m = 2) while allowing multiple possible reliability judgments (level n = 1).

1.2|Fuzzy Linear Programming

Linear programming is an optimization technique that aims to maximize or minimize a linear objective function subject to
a set of linear equality and inequality constraints(cf. [47-52]). Fuzzy linear programming generalizes this framework by
incorporating fuzzy numbers into the objective coefficients and constraints, allowing for uncertainty in both parameters and
feasible regions [53—57]. The definition of the Fuzzy Linear Programming is provided below.

Definition 0.11 (Fuzzy Linear Program). (cf. [53]) Let x = (x1,...,x,)" € RY, be the decision vector. A fuzzy linear
program (FLP) is specified by fuzzy numbers

Ci(G=1,....n), Ay (i=1,...om, j=1,...,n), B;(i=1,...,m),

and written as

n
Z(x):jez?cjxj — max, (1
n
subjectto (P Aijx; 2 By, i=1,....m. )

J=1
Here:

e “@” denotes the extended addition of fuzzy numbers via Zadeh’s extension principle:

Huev(2) = sup min{uy (u), py(v)}.

u+v=z

e “X” is a chosen fuzzy inequality relation between fuzzy sets (e.g. the pessimistic “<R” of Zimmermann).
e Each fuzzy number C ' (resp. A; s B;) is a convex normalized fuzzy set on R with membership Hé, (¢).

Example 0.12 (Fuzzy Production Planning). (cf. [58,59]) A factory produces two products x1,x, > 0. Profit per unit is
only approximately known:
G =15,6]w,  Co=1[3,4],
where [a, b]y denotes the triangular fuzzy number with support [a, b] and peak at the midpoint. There is a single resource
constraint: the available capacity is vague,
B =1[90,110]y,
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and each unit of x; consumes 2-3 units, of x, consumes 1-2 units:
A =1(23]e, A =[1,2].
Thus the FLP is ) ) 3 ) ) )
Z(x)=Cix1®Crxp, — max, Apxi®Apx; 2 B, x1,x >0.

Concretely, under the usual min—+ extension, the objective’s bounds are

Z(x) =5x1 +3x2,  Z(x) = 6x; +4xy,
and the resource constraint becomes the fuzzy interval

[2x) + 1xp, 3x; +2x2] 2 [90,110].

One may solve by introducing a crisp satisfaction level k € [0, 1] and forming the corresponding parametric LP.

2|Results of This Papers

This section outlines the main results presented in this paper.
2.1|HyperFuzzy Linear Programming

The definition of the HyperFuzzy Linear Programming is provided below.

Definition 0.13 (Hyperfuzzy Number). A hyperfuzzy number on R is a hyperfuzzy set
C:R — P([0,1]),
such that each a-cut
Co={ceR|supC(c) > a}
is nonempty and compact. Hyperfuzzy numbers generalize classical fuzzy numbers by assigning to each real ¢ a nonempty
compact subset C(c) € [0, 1] of possible membership degrees.
Definition 0.14 (Hyperaddition and Hyperscalar-Multiplication). Let U, V be hyperfuzzy numbers, and A > 0 a scalar.
Define:
OenV)(2) = | (0w n VW),

u+v=z

(e, 0)(z) = | ) Uw),

interpreting the unions over all decompositions of z. These extend the usual Zadeh extension principle to the hyperfuzzy
setting.

Definition 0.15 (HyperLinear Program). Letx = (x,...,x,)" € R;O be the decision vector. A HyperLinear Program
(HLP) is specified by hyperfuzzy numbers

C‘j(jzl,...,n), Aij(izl,...,m,j:l,...,n), Bi(izl,...,m),

and written as

Z(x) = PrjenC; — w0 3)
j=1
subject to @xj ®nAij 2n Bi, i=1,....m, “)

J=1
where “=<;,” is a chosen hyperfuzzy inequality (e.g. comparing a-cuts).
Example 0.16 (HyperLinear Production Planning). A factory produces two products x,x, > 0. The profit coefficients are
uncertain and modeled as hyperfuzzy numbers:
{0.7,0.8}, c¢=5, {0.6}, c=3,
Ci(c) =4 {0.9}, c=6, Ca(c) =4 {0.7,0.75}, c=4,
0, otherwise, 0, otherwise.
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Resource consumption per unit is also hyperfuzzy:

{0.8}, a=2, {0.65}, a=1,
All(a) = {09}, a= 3, A]z(a) = {085}, a = 2,
0, otherwise, 0, otherwise,

and the available capacity is hyperfuzzy:

{1.0}, b =90,
B(b) =1 {0.5}, b =110,
0, otherwise.

Thus the HyperLinear Program is

Z(x) =x1 ®p C, &p x29,C, — max, x1®, A1 On x2®, A1 =n B, x1,x2 > 0.
Objective evaluation at x = (10, 5). Possible profit values and membership degrees:
5.-10+3-5=65: u=min{supC;(5), supC>(3)} = min{0.8, 0.6} = 0.6,
10+4-5=70: u=min{0.8, 0.75} =0.75,
10+3:-5=75: p=min{0.9, 0.6} = 0.6,
10+4-5=80: u=min{0.9, 0.75} =0.75.

Il
A O W

Z
Z
Z
Z

Hence Z(10, 5) assigns {65 — 0.6, 70 > 0.75, 75 + 0.6, 80 — 0.75}.

Constraint evaluation at x = (10, 5). Possible consumptions and memberships:
c=2-10+1-5=25: p=min{supA;;(2), supA>(1)} = min{0.8, 0.65} = 0.65,

2-10+2-5=30: u=min{0.8, 0.85} =0.8,

3-10+1-5=35: wu=min{0.9, 0.65} = 0.65,

3-10+2-5=40: u=min{0.9, 0.85} =0.85.

c
c
c

Comparing to capacity:
sup B(90) = 1.0, sup B(110) = 0.5.
All consumptions ¢ < 90 yield satisfaction min{u, 1.0} = u, so x = (10, 5) is feasible with minimum satisfaction 0.65.

Thus this example demonstrates a HyperLinear Program’s evaluation under multiple profit and resource scenarios, with
membership degrees quantified by the hyperfuzzy arithmetic ®;,, ®y,.

Theorem 0.17 (Generalization of Linear Programming). Every classical linear program is a special case of an HLP in
which all hyperfuzzy numbers C 75 A; 75 B; have singleton-valued membership sets. Conversely, if in an HLP all C 7s A; s B;
are hyperfuzzy numbers with point-singleton membership at each real argument, then the HLP reduces exactly to the
corresponding classical LP.

Proof: (1) LP = HLP. Given a classical LP with crisp coefficients ¢, A;;, B;, define hyperfuzzy numbers by
~ 1}, c=¢y, x 1}, a=A;, 5 1}, b=8B,,
Cj(c):{{} c=c A,,(a):{” a= Ay Bi(b):{{} :

0, otherwise, 0, otherwise, 0, otherwise.

Then for any x, P ;Xj ®n C‘j has support exactly at the single scalar 3} ; ¢;x;, and similarly each constraint reproduces
2 Aijxj < B;. Thus the HLP (3)—(4) coincides with the original LP.

(2) HLP with singletons = LP. Conversely, if each hyperfuzzy number C | satisfies C i(c) € {1} or 0, then it encodes a
unique crisp coefficient ¢ ;. The hyperaddition @, and hyperscalar-multiplication ®;, on singleton-valued hyperfuzzy sets
reduce to ordinary addition and multiplication. Hence the HLP reduces to the classical LP with coefficients c;, A;}, B;.

(3) Hyperfuzzy Structure. By Definitions 0.15 and of hyperfuzzy numbers, each coefficient mapping takes values in
([0, 1]), endowing the objective and constraint functions with a hyperfuzzy set structure. Therefore HLPs both generalize
LPs and inherit the algebraic richness of hyperfuzzy set theory. O
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2.2|(m, n)-SuperHyperfuzzy Programming

The definition of the (m, n)-SuperHyperfuzzy Programming is provided below.
Definition 0.18 ((, n)-SuperHyperfuzzy Number). Let m,n > 0. Define recursively the nonempty k-th powerset of R by
P;(R) =R, PR)=P(P,_,(R)\{0}, k=>1.
An (m, n)-superhyperfuzzy number is a mapping
U: P,(R) — £([0,1]),
such that for each A € P} (R), U(A) € P, ([0, 1]) is nonempty and compact, and for each @ € (0, 1] the a-cut
Uo={AeP,R)|sup™ U(A) > a}
is a nonempty compact subset of P (R). Here sup”™) denotes the n-fold supremum in £} ([0, 1]).

Definition 0.19 ((m,n)-SuperHyperaddition and (m,n)-SuperHyperscalar-Multiplication). Let U,V be (m,n)-
superhyperfuzzy numbers and A > 0. For C € #;,(R), define

Ooma (€)= | ] (0(X)@naV(Y), X+Y={x+y|lxeX, yer},

X.YeP}, (R)
X+Y=C
and
A®n, D))= | ] 0(X), ax={ar|xeX}.
XeP;, (R)
AX=C

Here the (m, n)-superhyperproduct ®, , is given recursively by

A®niB={a-blacA beB}, A®u;B= U (X ®mi1Y), k=2
XeA,YeB
Definition 0.20 ((m, n)-SuperHyperFuzzy Linear Program). Letx = (x1,...,xy)" € R’ZVO. An (m, n)-superhyperlinear
program is specified by (m, n)-superhyperfuzzy numbers C‘j, Aij, B; for j=1,...,N,i=1,..., M, and takes the form

N
Z(x): @ Xj ®m.n C‘j — x>0, (®)]
m,n;j=1
N
s.t. @ X; ®mn Aij Zmn Bin i=1,....M, (6)
m,n;j=1

where =,,,., is a chosen ordering on P} ([0, 1]) (for instance, comparing all level-a cuts).

Example 0.21 (A (1,2)-SuperHyperFuzzy Linear Production Planning). Consider a factory producing two products
x1,x2 > 0. We model profit and resource data as (1, 2)-superhyperfuzzy numbers C; : P (R) = P(R) \ {0} — £ ([0, 1]).
For example:

Ci({5)) = {{{0.7,0.75}, {0.8}}, {{0.9}}}, Ci({6}) = {{{0.85}}},

and similarly for C,. Resource consumption A; 7 and capacity B, are defined analogously.
Then the (1,2)-SHLP is
Z(x)=x1812C @12 2®2C — max, x1 @245 &2 @A 22 B, x1,x>0.

Evaluating at x = (10, 5) produces a nested family of possible profit values and satisfaction levels, reflecting one level of
set-valued uncertainty in the coefficients (2 = 1) and two levels in the membership degrees (n = 2).

Example 0.22 (A (0, 3)-SuperHyperFuzzy Linear Production Planning). Consider a factory producing two products
x1,x2 > 0. We model both profit and resource coefficients as (0, 3)-superhyperfuzzy numbers C; : £;(R) = R —

P5([0,1]):
{{{0.6,0.65}, {0.7}}, {{0.75}, {0.8,0.85}}}, ¢ =5,

Ci(c) = b L2
{{{0.9}}}, c=6,

0, otherwise,
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{{{0.5}, {0.55,0.6}}, {{0.65}, {0.7,0.75}}}, ¢ =3,

Cale) = M e

{{{0.8}}}, c=4,

0, otherwise.

Resource consumption per unit is similarly given by (0, 3)-superhyperfuzzy numbers A; i :R— 73; ([0, 1]), for instance

{{{0.7}}, {{0.8},{0.85}}}, a=2, {{{0.6}, {0.65}}}, a=1,
Avi(a) = { {{{0.9}}}, a=3, Ap(a) = 1 {{{0.75}, {0.8}}}, a=2,
0, otherwise, 0, otherwise.

Available capacity B : R — #;([0,1]) is defined by

{{{1.o3}. b =100,
B(b) =4 {{{05}}}, b =120,

0, otherwise.
Then the (0, 3)-SHLP takes the form
Z(x) =x1 ®3 C ®0,3 X2 ®o,3 G — 0. X ®0,3 Ay @o,3 x2 ®p,3 Ap <03 B, x1,x>0.
Objective evaluation at x = (10, 5). Compute

10®0,3 C1 = {{{6,6.5}, {7}},{{7.5}, {8.8.5}}}, S®03Co={{{2.5}, {2.75,3}}. {{4}}}.

10L, 10L,

Their (0, 3)-superhyper-sum yields four nested sets—for example {{6,6.5},{7}} U {{2.5}, {2.75, 3} }—capturing all
combined profit possibilities.
Constraint evaluation at x = (10, 5). Similarly,

10®03 A1 = {{{7}}, {{8},{8.5}}}, S®o3 A ={{{3}.{3.25}}}.
Their (0, 3)-superhyper-sum is {{7,3}, {7, 3.25}, {8,3}, {8,3.25},{8.5,3}, {8.5,3.25}}. Since sup® 100 = 1.0 and
sup®) 120 = 0.5, all consumption sets satisfy the capacity constraint at full membership.
This example shows how a (0,3)-SHLP captures three nested levels of uncertainty in both objective and constraints,

producing a hierarchy of potential outcomes and feasibility degrees.

Example 0.23 (A (2, 2)-SuperHyperFuzzy Linear Production Planning). Consider a factory that produces two products
x1,x3 > 0. We model both profit coefficients and resource-consumption coefficients as (2, 2)—superhyperfuzzy numbers:

{{{0.6,0.65}, {0.7}}, {{0.8}}}, ¢ =10,
N——
L] LZ
Ci(c) =1 {{{0.9,0.95}}, {{0.85}}}, c=12,
S——— Y—
Ls Ly
0, otherwise,

{{{0.5,0.55}, {0.6}}, {{0.65}, {0.7,0.75}}}, ¢ =38,

M, M

Ca(e) =1 {{{0.8}}, {{0.85,0.9}}}, c=6,
—— ———
M3 My

0, otherwise.
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Resource consumption per unit is similarly given by

{{{0.7}, {0.75}}, {{0.8}}}, a=4, {{{0.6}, {0.65,0.7}}}, a=3,
_ Ry Ry B S1
Api(a) =1 {{{0.85}}, {{0.9,0.95}}}, a=5, Ap(a) =1 {{{0.8}, {0.85}}}, a=4,
— —
R3 Ry S>
0, otherwise, 0, otherwise.

The available capacity is

{{{1.0}}, {{0.5}}}, b =100,
T 2y
B(b) =3 {{{0.9}, {0.95}}}, b =120,
T3
0, otherwise.

Then the (2, 2)-SuperHyperLinear Program reads
Z(x)=x1 @, C1 @2 %2 @26 — 10,
s.t. X1 ®22 An S22 X2 ®22 Alz =22 E, x1,xp > 0.
Objective evaluation at (x,x;) = (2,3).

20 — {L, L»},
24 +— {L3,L4},

24 +— {M, M,},

2®, C :
22 { 18 5 (M3, My).

3®2,2 62 : {

Thus there are four profit scenarios:

4. {LiUM,, LiUM,, L,UM;, L, UM,},
38 : {LlUM3, LiUMy, LyUMs, LyU My},
48 : {L3UM1, Ly UM,, LsU M, L4UM2},
42 {L3UM3, L3 UMy, LyU M;, L4UM4}.

7(2,3) =

Constraint evaluation at (x;,x,) = (2, 3).

8> {Rl,Rz},
10 — {R3,R4},

9 {81},

2822 Au :{ 12 5 (S5}
24

3®0 A : {

Their superhyper-sum yields four consumption scenarios:
172{R1US],R2US]}, 182{R1U52, RzUSQ},
192{R3US],R4US]}, 222{R3U52, R4US2}.

Comparing to capacity B (at 100 and 120), all consumptions < 100 satisfy the constraint with full membership, so (2, 3) is
feasible at degree 1.

This example demonstrates how a (2, 2)-SHLP captures two nested levels of set-valued uncertainty in both the objective
and the constraints, producing a rich hierarchy of possible outcomes and satisfaction degrees.

Example 0.24 (A (1, 3)-SuperHyperFuzzy Linear Production Planning). Consider a factory producing two products
x1,x2 > 0. We model both profit coefficients and resource-consumption coefficients as (1, 3)—superhyperfuzzy numbers

C;: P;(R) — P;5([0,1])

and
Aij 1 Pr(R) — P;([0,1])
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. For example:
{{{0.7,0.75}, {0.8}}, {{0.85}, {0.9,0.95}}}, ¢ =10,

Ci(c) = Ly L,
{{{0.9}}}, c=12,

0, otherwise,

{{{0.5}, {0.55,0.6}}, {{0.65}, {0.7,0.75}}}, ¢ =38,

Ca(c) = M Mo

{{{0.8}}}, c=6,

0, otherwise.

Similarly, resource consumption per unit is
{{{0.7}, {0.75}}, {{0.8}, {0.85}}}, a=4,

Ayi(a) = Ry Ry

{{{0.9}}}, a=5,

0, otherwise,

{{{0.6}, {0.65,0.7}}}, a=3,

Ap(a) = Si
{{{0.95}}}, a=4,

0, otherwise.

The available capacity is
{{{1.03}}, b =100,

B(b) =1 {{{0.5}}}, b =120,
0, otherwise.
Then the (1, 3)-SuperHyperLinear Program takes the form
Z(x)=x1813C &3 28036 — 0,

subjectto x| ®13 A @13 2@ 3A1 <13 B, x;,x>0.
Objective evaluation at (x, x;) = (2,3).
20— {Ly, L},
24— {{{0.9}}},

Hence the objective yields four profit-scenarios:

24— {M, M;},

2®153C { 18 — {{{0.8}}}.

3®1,3 62 : {

44: {Li UM, Li UM, L, UM, L, UM},
38: {L; U{{0.8}}, L, U {{0.8}}},

48 1 {{{0.9}}} U My, {{{0.9}}} U M;,

42 {{{0.9}}} U {{0.8}}.

Constraint evaluation at (x;,x,) = (2, 3).
8 = {Ri, R2},
10— {{{0.9}}},
Their superhyper-sum produces four consumption scenarii:
17 :{R1USy, Ry US},
20 : {R; U{{0.95}}, R, U {{0.95}}},
19: {{{0.9}}} U §1,
22 : {{{0.9}}} U {{0.95}}.

7(2,3) =

9 {81},

2 ®13 A1 : { 12 — {{{0.95}}}.

3®13An0: {
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Since all consumptions < 100, each scenario satisfies the constraint at membership level drawn from B(100) = {{1.0}}.
Thus (2, 3) is feasible with full satisfaction.

This example illustrates how a (1, 3)-SuperHyperLinear Program captures one level of set-valued uncertainty in coefficients
and three nested levels in membership degrees, yielding a rich scenario analysis for both objective and constraints.

Theorem 0.25 (Reduction of (m, n)-SuperHyperFuzzy Linear Programs). Let m,n > 0. An (m,n)-SuperHyperFuzzy
Linear Program, as given in Definition 0.20, enjoys the following reductions:

(i) Recovery of HyperFuzzy LP. If we set m = 0 and n = 1, then
Py (R) =R,

PL0.1) = (S [0.1]| S # 0},
and the superhyper-operations @1, ®o,1, 0,1 reduce exactly to the hyperaddition, hyperscalar-multiplication,

and fuzzy ordering of a HyperFuzzy Linear Program (Definition 0.15). Hence every HyperFuzzy LP is a special
case of the (m,n)-SHLP.

(ii) Reduction to level-n = 1 in the codomain. Suppose each coefficient map C it Pr(R) — ﬁ;([O, 1) actually
takes values in the subfamily 75{‘([0, 1]) € P ([0, 1]). Then all membership-degree operations Sy > Sm.ns Sm.n
restrict to the level-1 versions ®,.1, ®m.1, Im.1, and the program reduces to an (m, 1)-SuperHyperLinear
Program.

(iii) Recovery of HyperFuzzy LP from real-valued domain. If, in addition, each coefficient map’s domain is P, (R) =R,
then the coefficient domain collapses to real numbers and the program further reduces to a HyperFuzzy Linear
Program, with no remaining set-valued or hierarchical structure.

Proof: We verify each statement in turn.

(i) Recovery of HyperFuzzy LP. By choosing m = 0 and n = 1, the domain #;(R) becomes R, and the codomain
551* ([0, 1]) is exactly all nonempty subsets of [0, 1]. Under these parameters, the superhyper-addition & ;, superhyper-
scalar multiplication ®q 1, and ordering =< ; coincide with the operations defined for a HyperFuzzy Linear Program
(Definition 0.15). Thus every HyperFuzzy LP embeds in the (m, n)-SHLP framework.

(ii) Reduction to level-1 codomain. If each C ; factors through @f([O, 1]), then for all A € P, (R) we have C i(A) €
ﬁf ([0, 1]). By definition of the superhyper-operations, this condition forces @, n, ®.n, and =<, , to act as @1, .1,
and <, | respectively. Hence the original (m,n)-SHLP is equivalent to an (m, 1)-SHLP.

(iii) Recovery of HyperFuzzy LP from real domain. Finally, if the domain also collapses via #,,,(R) = R, then all coefficient
maps reduce to C; : R — #7([0, 1]), and the program becomes precisely a HyperFuzzy Linear Program with operations
@o,1, ®0,1, and <o 1.

This completes the proof. O

Theorem 0.26 (Classical Linear Program as a Special Case). Let m,n > 0. Suppose in an (m, n)-SuperHyperFuzzy Linear
Program (Definition 0.20) each coefficient mapping

C;:PL(R) — £([0,1])

satisfies
C‘j (A) ={{c;}} forsome fixedc;j€R (and similarly for Aij, B)).
Then the program (5)—(6) reduces exactly to the classical linear program
N N
r){lg.())(Z;Cij, s.t. .lAinjSBi,l'Il,...,M,
j= j=

where A;;, B; are the crisp values arising from A,-]- and B;.

Proof: Since each C i (A) is the singleton {c}, the superhyper-scalar multiplication ®,, , satisfies

Xj ®m,n éj = {Xj'Cj} CR,
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and the superhyper-addition &, , of singletons reduces to ordinary addition. Likewise, the constraint operations collapse to
2.j Aijxj < Bj. Hence the (m, n)-SuperHyperLinear Program coincides with the classical LP. O

Theorem 0.27 (a—Cut Decomposition). For each a € (0, 1], define the a—cuts of the coefficient mappings by
Cia={AcP,R)|sup™ C;(A) > a},
Aij.a = {A eP,(R)| sup™ Al-j(A) > a}, Bi o= {b € R | sup™ B;(b) > a}.
Then the family of classical programs
N N
iXj, St ijXj < in b;, i=1,...,M,
parameterized by a, exactly describes the a-level behavior of the (m, n)-SuperHyperLinear Program. In particular:

o The fuzzy feasible region of the (m,n)-SHLP is (\qe (0,111 X | x feasible at level a}.

o The fuzzy objective Z(x) is recovered by collecting, for each a, the optimal values of these crisp programs.

Proof: By definition of the a—cut, C; , collects precisely those domain values A whose membership supremum is at least

«. For any x, the value of x; ®,,,, C; atlevel a is the set {x; - ¢ | ¢ € Cj o}. Superhyper-addition of these sets then
yields the interval [mincec_m 2. CXj, maxcec;, >, cx‘,-]. Requiring this interval to lie below min B; ,, enforces the crisp
inequality maxgea,; , 2, aX; < minpep, , b. Collecting over all a recovers the full fuzzy program. O

Theorem (.28 (Monotonicity of a—Level Feasible Sets). Let ay, @, € (0, 1] with a1 < ay. Then
Cj,az c Cj,(ll’ Aij,afz c Aij,(ll’ Bi,(lz c Bi,(ll’

and consequently the a—level feasible region is contained in the a1-level feasible region.

Proof: By construction, if sup™ C‘j (A) > @ > a; then certainly sup™ C’j(A) > a;. The same argument applies to A,-j
and B;. Hence each higher—a cut is nested inside the lower—a cut, and the corresponding feasible regions satisfy the stated
containment. O
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