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Abstract

This paper introduces a Fuzzy Quasi Newton Davidon Fletcher Powell (FQNDFP) optimization algorithm
incorporating with Armijo line search technique to effectively handle imprecisely defined optimization
problems. Unlike traditional probabilistic methods, this approach leverages fuzzy set theory to model
uncertainties in optimization variables given in the objective function. The proposed algorithm integrates
the Davidon-Fletcher-Powell (DFP) update formula, ensuring computational efficiency and rapid conver-
gence by approximating the inverse Hessian matrix. The Armijo line search guarantees sufficient descent
while adapting the step size dynamically. This combination enhances the algorithm’s ability to navigate
complex, nonlinear, and uncertain objective landscapes effectively. The performance of the algorithm is
evaluated on benchmark problems and fuzzy objective functions, demonstrating accuracy, robustness, and
convergence compared to existing methods.

Keywords: Fuzzy number, Optimization problem, IFQNDFP optimization technique, Inexact line search,
Armijo line search.

1|Introduction
Unconstrained optimization problems are prevalent across various fields, including engineering, economics,
and machine learning. Many developments of efficient optimization algorithms have emerged for this type
of problem. Among these, the quasi-Newton methods, particularly those employing the Davidon-Fletcher-
Powell (DFP) update have shown promising results. In this context, several classical optimization methods are
available to solve the nonlinear system and unconstrained optimization problems. In gradient-based approaches,
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such as the Steepest Descent method, Newton’s method, Quasi-Newton method, Broyden’s method, and the
Levenberg–Marquardt method, can be applied to nonlinear systems as described by [1]. For unconstrained
optimization problems, these methods are discussed in [2]; [3]; and [4]. But in real practice, the system possesses
uncertainties due to most of the parameters are imprecise in nature. In this regards, [5] introduced the fuzzy
set theory, which needs to incorporate for handling such impreciseness. To address the inherent imprecision
in objective functions and constraint within decision-making problems, the fuzzy optimization problems have
been extensively studied by [6]. In a survey article, [7] highlighted the key developments and future directions
in the theories and applications of fuzzy optimization. In [8], authors provided an insightful overview of the
evolution of fuzzy optimization problems. In light of this, [9], along with [10] developed a Newton method for
solving unconstrained fuzzy optimization problems. Likewise, in [11] introduced both a Newton method and
a quasi-Newton method [12] for interval optimization problems. In real-life optimization scenarios, it is often
necessary to optimize a fuzzy function over a real data. This literature review explores the integration of fuzzy
computation into quasi-Newton methods, specifically focusing on the DFP update to enhance optimization
performance. Quasi-Newton methods are iterative optimization techniques that used to find the approximation of
Hessian matrix to determine the optimal solution. Among these, the DFP method is notable for its simplicity and
efficiency. In [1], authors provide a comprehensive overview of numerical optimization techniques, highlighting the
importance of quasi-Newton methods in solving unconstrained problems. Despite their effectiveness, traditional
quasi-Newton methods can struggle with non-convex optimization problems. Further, the DFP update mechanism
is designed to iteratively refine the approximation of the Hessian matrix, which is crucial for convergence study
of optimal solutions efficiently. Recent advancements in stochastic quasi-Newton methods have broadened the
applicability of DFP updates to large-scale optimization scenarios [13]. However, integrating fuzzy concepts into
this process could provide additional flexibility and robustness, particularly in environments characterized by
uncertainty.

Recent literature has introduced various competitive swarm optimizers and bio-inspired algorithms that have
been successfully applied to large-scale optimization problems [14]. These approaches often leverage elements of
fuzzy computation to enhance their search capabilities. There remains a significant gap in synthesizing these
contemporary methods with traditional quasi-Newton approaches, particularly regarding the DFP update.

As such, the fuzzy computation [17] has been increasingly utilized in optimization problems due to its ability to
handle uncertainty and imprecision. The incorporation of fuzzy theory [2] into optimization frameworks can
enhance the robustness of solutions, especially in scenarios where the objective function or constraints are not
clearly defined. Previous studies have demonstrated that fuzzy logic can effectively improve the performance of
various optimization algorithms [15]. A fuzzy set is the union of intervals with different α-cuts. In [16] authors
provided an optimization approach to solve an interval nonlinear system with a limited parameter. Recently, the
authors [17] developed a derivative free approach to solve the fuzzy nonlinear system. In [18], authors provided
an IODS optimization algorithm to handle the fuzzy unconstrained optimization problem. Consequently, various
direct search methods have been employed to solve nonlinear systems of equations, enabling the analysis of
fuzzy nonlinear systems. The descent direction method plays a major role to develop the optimization algorithm.
Therefore, in [19] proposed a FCGDO method for unconstrained optimization problem. However, the application
of fuzzy principles within the quasi-Newton framework remains under explored. Despite the substantial body of
work surrounding quasi-Newton methods and fuzzy optimization, several knowledge gaps persist:

(1) There is limited research on the direct application of fuzzy theory within the DFP update mechanism,
which could potentially enhance convergence rates and solution quality.

(2) Comparative studies that evaluate the performance of fuzzy quasi-Newton methods with DFP updates
against other optimization techniques are sparse. Such analyses are essential to establish the efficacy of
this hybrid approach.

(3) The scalability of fuzzy quasi-Newton methods in large-scale optimization problems remains largely
unexplored. Future research should address how these methods can be adapted for high-dimensional
large scale problems.

The integration of fuzzy computation into the quasi-Newton framework, specifically through the DFP update,
presents a promising avenue for enhancing the performance of unconstrained optimization algorithms. Thus,
in this article, main intend is to develop an inexact quasi-Newton method as an alternative of the traditional



quasi Newton method, primarily to reduce the computational overhead associated with computing the inverse
of the Hessian matrix. To handle such issue in fuzzy environment While significant advancements have been
made in both fuzzy computation and quasi-Newton methods. Additional research is required to fully exploit the
synergies between these fields. Addressing the identified knowledge gaps and pursuing the suggested research
directions will contribute to the development of more robust and efficient optimization techniques suitable for
complex real-world applications.
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2|Fuzzy Optimization Problem Formulation
The fuzzy system of equations can be constructed as

F1 (x1, x2, . . . , xn) = ξ1

F2 (x1, x2, . . . , xn) = ξ2

...
Fn (x1, x2, . . . , xn) = ξn

(1)

Thus, Eq. (1) can be converted into an interval form using a parametric representation.[
Fα

L1
(x̃1, x̃2, . . . , x̃n) , Fα

R1
(x̃1, x̃2, . . . , x̃n)

]
= [ξL1 , ξR1 ][

Fα
L1

(x̃1, x̃2, . . . , x̃n) , Fα
R2

(x̃1, x̃2, . . . , x̃n)
]

= [ξL2 , ξR2 ]
...[

Fα
Ln

(x̃1, x̃2, . . . , x̃n) , Fα
Rn

(x̃1, x̃2, . . . , x̃n)
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, ξRn

]

(2)

Fuzzy system in Eq. (2) is transformed into an interval system by using the different values of α.
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The above system Eq. (3) can be converted into nonlinear unconstrained optimization problem which is written
as

F̃(x̃) = (Fa
1 (x̃))2 + (Fα

2 (x̃))2 + · · · + (Fα
2 (x̃))2 (4)

A multi-variable function of F : Rn → R) possess a minimum that can be obtained with the help of IFQN-DFP
optimization algorithm. Then, the unconstrained optimization problem is defined as

min
xn

F(x̃), where x̃ = [x1, x2, . . . , xn]]
n

∈ Rn (5)

In the next section, we will discuss about the Inexact IFQN-DFP optimization algorithm in details.

3|METHODOLOGY
In this section, we develop inexact fuzzy quasi-newton-Davidon-Fletcher-Powell (IFQN-DFP) optimization
algorithm to solve fuzzy unconstrained multivariable optimization problem. The same is derived from the fuzzy
nonlinear problem. The derivation IFQN-DFP is performed by using the combination of Daviden-Fletcher-Powell
and Armijo type inexact line search. The exact line rule ideal line search rules, but due to some difficult, it
is impossible to implement in real life problem. As such, several researchers have studied various type of line
search technique to solve the optimization problem. Moreover, This algorithm is proposed by using modified
Armijo type line search to minimize the field variables of fuzzy unconstrained optimization problem. In the next
we discuss the procedure to develop IFQN-DFP. Let us consider the fuzzy unconstrained optimization problem

min
Rn

F(x̃), x̃ = [x1, x2, . . . , xn]T ∈ Rn (6)



where, F̃(x̃) : Rn → R is a continuously differentiable convex function. For instance, quasi-Newton methods to
adjust the objective function using an approximation of the inverse Hessian based on a series of rank updates,
which makes the computations more affordable. So, we execute IFQN-DFP with a starting point x0 ∈ Rn. Here,
the IFQN-DFP algorithm can be obtained from the following expression

To find the solution of this problem, very known Newton method is existed, the issue with the Newton method for
optimization is that it requires computing the inverse of the Hessian matrix, which is the second-order derivative
of the objective function. This operation may be very expensive computationally, especially for large-scale
problems, because computing and storing the inverse of the Hessian is prohibitively expensive. There have been
several methods developed to circumvent this problem. One common approach is to use approximations of the
Hessian instead of computing its inverse.

IFQN-DFP Algorithm
Let us consider quadratic approximation for left and right fuzzy value function F̃α

L and F̃α
R at x̃k. We may

calculate F̃α
L (x̃k) , F̃α

R (x̃k) , ∇F̃a
L (x̃k) , ∇F̃α

R (x̃k) and ∇2F̃α
L (x̃k) , ∇2F̃α

R (x̃k) for all α ∈ [0, 1] and k = 1, 2, 3, . . .

Hence, we can have a Taylor’s quadratic approximation of F̃α
L and F̃α

R at x̃k yields a function Fα
L(x̃) and Fα

R(x̃)
as follows

Fα
L(x̃) = F̃α

L (x̃k) + ∇F̃α
L (x̃k)T (x − x̃k)

+1
2 (x − x̃k)T ∇2F̃α

L (x̃k) (x − x̃k)
(7)

and
Fα

R(x̃) = F̃α
R (x̃k) + ∇F̃α

R (x̃k)T (x − x̃k)

+1
2 (x − x̃k)T ∇2F̃α

R (x̃k) (x − x̃k)
(8)

By setting the partial derivatives of Eqs. (7) and (8) equal to zero for the minimum of Fα
L(x̃). we obtain, the

derivative of Fα
L(x̃) and Fα

R(x̃), we get

∇Fα
L(x̃) = ∇F̃α

L (x̃k) + ∇2F̃α
L (x̃k) (x̃ − x̃k)

∇Fα
R(x̃) = ∇F̃α

R (x̃k) + ∇2F̃α
R (x̃k) (x̃ − x̃k)

(9)

The Newton method is attempted to find the solution of the x̃k+1 in term of x̃k. The iterative updated field
variables can be obtained from the following expression.{

x̃α
Lk2

= x̃α
Lk

−
[
∇2F̃α

L (x̃k)
]−1 ∇F̃α

L (x̃k)
x̃α

Rk+1
= x̃α

Rk
−

[
∇2F̃α

R (x̃k)
]−1 ∇F̃α

R (x̃k)
(10)

where x̃Lk+1 and x̃Rk+1 is the new iteration point for every left and right value, and x̃Lk
and x̃Rk

is the
previous point. However, due to the computational difficulty to find ∇2F̃α

L (x̃k) and ∇2F̃α
R (x̃k) with different

α value, it is often to suggested to consider an appropriate approximation HLk
=

[
∇2F̃α

L (x̃k)
]−1 and HRk

=[
∇2F̃a

L (x̃k)
]−1. Note that the [HLk

, HRk
] is composed of the second derivation of nonlinear fuzzy objective

function
[
F̃α

L (x̃k) , F̃α
R (x̃k)

]
. Hence, the basic idea behind quasi-newton method is to update [HLk

, HRk
]. In

this regard, the update of field variables can be obtained from quasi-Newton is{
x̃α

Lk+1
= x̃α

Lk
− λkHα

L∇F̃α
L (x̃k)

x̃α
Rk+1

= x̃α
Rk

− λkHα
Rk

∇F̃α
R (x̃k) (11)

where, λk is the step size which is consider as Armijo type line search along the direction of
[
Sα

Lk′ , Sα
Rk

]
is search

direction. Here, Sα,γ
k is represented in terms

[
Sα

Lk
, Sα

Rk

]
of parametric from is define follows,

Sa,γ
k = (1 − γ)Sα

Lk
+ γSα

Rk
, for all γ ∈ [0, 1] (12)

where [
Sα

Lk
= −Hα

Lk
∇F̃α

L (x̃k) , Sα
Rk

= −Hα
Rk

∇F̃α
R (x̃k)

]

An inexact line search FQNDFP algorithm to investigate uncertain optimization problems 109



At Sα,γ
k occurs at γ = 0, in which case Sαγ

k = −HLk
∇F̃ α

L (x̃k) and Hαγ
k = (1 − γ)Hα

Lk
+ γHα

Rk
at γ = 1, in

which case S
aγ γ
k = −HRk

∇F̃α
R (x̃k).

Computation of [HLk
, HRk

] using DPF Algorithm
To implement the Eq. (11) we need to find the approximate value of inverse of the Hessian matrix in the interval
term [HLk

, HRk
]. As per the Eq. (9) we can expand the function at x̃0, and using the Taylor’s series is written

as
∇Fα

L(x̂) = ∇F̃α
L (x̃0) + ∇2F̃ α

L (x̃0) (x̃ − x̃0)
∇Fα

R(x̃) = ∇F̃α
R (x̃0) + ∇2F̃α

R (x̃0) (x̃ − x̃0)
(13)

If the Eq. (13) is working on two points at x̃k and x̃k+1, which can rewrite as{
∇Fα

Lk+1
= ∇F̃α

α̃ (x̃0) + ∇2F̃α
L (x̃0) (x̃k+1 − x̃0)

∇Fα
Rk+1

= ∇F̃α
R (x̃0) + ∇2F̃α

R (x̃0) (x̃k+1 − x̃0) (14)

{
∇Fα

Lk
= ∇F̃α

L (x̃0) + ∇2F̃α
α (x̃0) (x̃k − x̃0)

∇Fα
Rk

= ∇F̃α
R (x̃0) + ∇2F̃α

R (x̃0) (x̃k − x̃0)

}
(15)

Subtracting Eq. (15) from Eq. (14) yields [
∇2F̃α

L (x̃k)
]

d̃k = g̃α
Rk[

∇2F̃α
R (x̃k)

]
d̃k = g̃α

Rk

(16)

where, dk = x̃k+1 − x̃k and g̃Lk
= ∇Fa

Lk+1
− ∇Fa

Lk
and g̃Rk

= ∇Fa
Rk+1

− ∇Fa
Rk

and the
[
g̃a

Lk
, g̃α

Rk

]
can be written

as
g̃α,γ

k =
[
g̃α

Lk
, g̃α

Rk

]
= (1 − γ)g̃α

Lk
+ γg̃α

Rk

= (1 − γ)
[
∇2F̃ α

L (x̃k)
]

dk + γ
[
∇2F̃α

R (x̃k)
]

dk,

for all γ ∈ [0, 1]

At g̃α,γ
k occurs at γ = 0, in which case g̃α,γ

k =
[
∇2F̃α

L (x̃k)
]

d̃k and at γ = 1, in which case Sα,γ
k =

[
∇2F̃α

R (x̃k)
]

d̃k.
Similarly, we can saw that Hαγ

k = (1 − γ)Hα
Lk

+ γHα
Rk

, for all γ ∈ [0, 1].
We may say

d̃k = [Hα,γ
k ] g̃α,γ

k (17)
The general formula for updating the [Hαγ

k ] can be written as

[
Haγ

k+1
]

= [Haγ
k ] + [∆Haγ

k ] (18)
where, [∆Haγ

k ]is considered as updated rank in n. Here, we tried to introduce rank update
[
Hαγ

k+1
]

is presented
as follow To derive the rank update, we simple choose uk and vk are two vectors, uk, vk ∈ Rn and rk and sk are
the two scalars. Now, we consider as

[∆Hαγ
k ] = rkukuT

k + skvkvT
k (19)

Therefore, now we have [
Haγ

k+1
]

= [Hαγ
k ] + rkukuT

k + skvkvT
k (20)

As per the Eq. (20) is satisfying the quasi-Newton method and update
[
Hα−

k

]
to

[
Haγ

k+1
]

matrix. Now, we can
update the Eq. (17) which is

d̃k =
[
Hαγ

k+1
]

g̃aγ
k

=
(
[Hαγ

k ] + rkukuτ
k + skvkvT

k

)
g̃aγ

k

d̃k = [Haγ
k ] g̃αγ+

k + rkuk (uτ
k g̃αγ

k ) + skvk

(
vT

k g̃αγ
k

)
(21)

Although, uk and vk are not uniquely defined, so we consider as
uk = d̃k, vk = [Haγ

k ] g̃aγ
k
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and putting this value in Eq. (21), which are define as

rk = 1
uT

k ĝaγ
k

= 1
d̃g̃aγ

k

sk = − 1
vT

k g̃aγ
k

= − 1
g̃aγT

k [Haγ
k ] g̃aγ

k

Thus, the rank update formula can be expressed as[
Haγ

k+1
]

= [Haγ
k ] + [∆Haγ

k ] (22)

= [Haγ
k ] + d̃kd̃T

k

d̃T
k g̃αγ

k

−
([Haγ

k ] g̃aγ
k ) ([Haγ

k ] g̃aγ
k )T

g̃aγT
k [Haγ

k ] g̃aγ
k

We consider this Eq. (22) to update the sequence of inverse Hessian matrix approximation of IFQN-DFP As per
the Eq. (11), we may write as

x̃a,γ
k+1 = x̃a,γ

k + λ̃kSa,γ
k (23)

where, sα,γ
k is the search process and as we know d̃α,γ

k = x̃α,γ
k+1 − x̃α,γ

k can be rewritten as

d̃α,γ
k = λ̃kSa,γ

k (24)
After that Sα,γ

k is given and d̃α,γ
k is given, thus the next task is to find a step size λ̃k along the search direction.

Therefore, we can use some inexact line search rules. The advantage of Armijo’s type line search is that it
enables to estimate an initial step size. For good estimation for initial steps, it makes to decrease the objective
function evaluation at each iteration. For that, here we modified a new Armijo type inexact line search rule in
fuzzy environment.

Modified Armijo Line Search Rule
Generally, choosing the parameter (such as θ̃, σ̃, β̃ ) is very important for real practice. In this regard, to choose
an appropriate parameter that is satisfy the proposed FIQN-DFP algorithm. Here, we developed a modified
version of Armijo line search, which is easier to find step size λ̃k. It is obvious that the modified inexact line
search rule is well define for fuzzy optimization as well as proposed FIQN-DFP. Then, the modified Armijo type
line search is representing as follows Choose θ̃ > 0, β̃ ∈ (0, 1) and σ̃ ∈

(
0, 1

2
)
, and the step size λ̃k to be found

the max
{

θ̃, θ̃β̃, θ̃β̃2 . . .
}

such that

F̃α,γ
(
x̃k + λ̃S̃α,γ

k

)
− F̃αγ (x̃k) ≤ σ̃λ̃

[
∇F̃α,γ (x̃k)T

sα,γ
k

+1
2 S̃α,γT

k [Hαγ
k ] S̃α,γ

k

]
Also, the Eq. (33) and modified Armijo type line search are satisfied the following Hypothesis conditions. We
assume that
Assumption 1 : The fuzzy valued function F̃α,γ (x̃k) has a lower and upper bound on the level set

L0 =
{

x̃k ∈ Rη | F̃αkγ (x̃k) ≤ F̃αγ γ (x̃0)
}

(25)

Assumption 2 The gradient of fuzzy value function ∇F̃aγ (x̃k) of F̃a,γ (x̃k) is Lipschitz continuous in an open
convex set B̃ that contains L0, i.e. there exist a constant L ≥ 0 such that

∥∇Fαk (x̃k) − ∇Fαα (ỹk)∥ ≤ L ∥x̃k − ỹk∥ , (26)
for all x̃k and ỹk ∈ B

For the fuzzy computational aspect, modified Armijo’s line search technique is employed to in the proposed
Inexact FQNDFP to efficiently determine the step size in the search direction, helping to converge toward the
optimal solution during the iterative optimization process. Next, we describe the proposed Inexact FQNDFP
algorithm.The proposed algorithm is used to solve the unconstrained optimization problem in a fuzzy environment.
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For a better understanding and validity of the proposed method, we have discussed the numerical analysis of the
same in the next section.

Algorithm 1 IFQN-DFP Algorithm
1: Step 1: Formulate the fuzzy unconstrained multi-variable optimization problem Fα,β(x̃) : Rn → R.
2: Step 2: Choose an initial vector x̃0
3: Step 3: Take convergence parameters ϵ and ϵ′.
4: Step 4: Compute ∇Fα,γ = ∇Fα,γ (x̃k), at the point x̃k, where k = 1, 2, . . . , n
5: if

∥∥∇Fα,β (x̃k)
∥∥ < ϵ then,

6: Terminate.
7: else if
8: thengo to the step 5.
9: end if

10: Step 5: Compute the search direction
Sα,γ

k = −Hα
k ∇Fα

L (x̃k)
11: Step 6: Set x̃k+1 and update the x̃k values with the following relation.

x̃α,γ
k+1 = x̃α,γ

k + λ̃kSα,γ
k

12: where Sα,β
k = −Hα

k ∇Fα
L (x̃k) and λ̃k is determined by the following step 7

13: Step 7: Choose θ̃ > 0, β̃ ∈ (0, 1) and σ̃ ∈
(
0, 1

2
)
, and the step size λ̃k to be found the max

{
θ̃, θ̃β̃, θ̃β̃2 . . .

}
such that

F̃ α,γ
(
x̃k + λ̃Sα,γ

k

)
− F̃ α,γ (x̃k)

≤ σ̃λ̃

[
∇F̃ α,γ (x̃k)T

Sα,γ
k + 1

2 λ̃Sα,γT
k [Hαγ

k ] Sα,γ
k

]
14: Step 8: Test the point x̃α,γ

k+1 for optimality.
15: if

∥∥∇Fα,β (x̃k+1)
∥∥ < ϵ′ then,

16: Terminate.
17: else if
18: thengo to the step 9 .
19: end if
20: Step 9: Update the Hessian matrix by using DFP as follows[

Haγ
k+1

]
= [Haγ

k ] + [∆Haγ
k ]

= [Haγ
k ] + d̃kd̃T

k

d̃T
k g̃αγ

k

−
([Haγ

k ] g̃aγ
k ) ([Haγ

k ] g̃aγ
k )T

g̃aγT
k [Haγ

k ] g̃aγ
k

21: Step 10: Set k = k + 1 and go to step 4.

4|Numerical Example

Example 1
Here, we have considered an example [18] to apply the IFQN-DFP algorithm. Consider a fuzzy system of
nonlinear equations

ã11x2
1 + ã12x2 = χ̃1

ã21x1 + ã22x2
2 = χ̃2

(27)
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Here, the coefficients are taken as triangular fuzzy number (TFN)[20]. where ã11 = [0.4, 1, 1.4], ã12 =
[0.6, 1, 1.6], ã21 = [0.7, 1, 1.5], ã22 = [0.5, 1, 1.7], χ̃1 = [2.5, 5.3, 7.5] and χ̃2 = [3.2, 6.7, 8.6]. Let the initial
approximation be x(0) = (1, 1)T with a tolerance value of ϵ = 10−4. The process begins by formulating the
system and transforming Eq.(27) into a fuzzy unconstrained minimization problem, which is solved using the
proposed IFQN-DFP algorithm. By applying the IFQN-DFP algorithm, the solution components of x1 and

Table 1. Iteration wise x1 and x2 solution for α = 0

Iteration x1 x2 F(x̃) ∥∇F(x̃)∥
0 1 1 6.25 7.7897
1 2.3 2.45 3.171 10.1592
2 1.9191 1.3497 0.9417 3.4466
3 1.9897 1.648 0.207 1.4494
4 1.836 1.9768 0.0027 0.2498
5 1.831 1.9531 0.0003 0.0354
6 1.8211 1.9614 0 0.0081
7 1.818 1.9634 0 0.0004
8 1.8179 1.9634 0 0
9 1.8179 1.9634 0 0
10 1.8179 1.9634 0 0

x2 with their objective function and corresponding gradient value are represented in Table 1 and 3 for α = 0
and Table 2 for α = 1. Whereas, the uncertain TFN solution with different α-cut solutions of x1 and x2 are
represented in Fig. 1 and Fig. 2 respectively. The IFQN-DFP algorithm demonstrates superior performance

Table 2. Iteration wise x1 and x2 solution for α = 0

Iteration x1 x2 F(x̃) ∥∇F(x̃)∥
0 1 1 32.98 33.9988
1 2.4125 2.5875 15.4543 46.6979
2 1.2194 2.927 10.3135 34.4186
3 1.2853 2.1354 3.0193 14.0236
4 1.514 2.2463 0.5995 5.6276
5 1.7815 2.2726 0.0821 2.9604
6 1.7294 2.2458 0.0094 0.6048
7 1.7435 2.2334 0.0017 0.261
8 1.754 2.2241 0 0.0072
9 1.7539 2.224 0 0.0001
10 1.7539 2.224 0 0

across various nonlinear benchmark optimization problems. As shown in Table 5 and Fig. 4, IFQN-DFP
consistently achieves faster convergence, requiring fewer iterations and function evaluations, with a convergence
rate. It significantly reduces computational cost, as indicated by the lower CPU time, making it highly efficient
for solving fuzzy optimization problems. The algorithm also produces more accurate solutions, with lower
absolute error compared to other methods.

Test Function
In this section, we have tested 3 benchmark problem [14] compared with proposed IFQN-DFP algorithm with
two different method
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Table 3. Iteration wise x1 and x2 solution for α = 0

Iteration x1 x2 F(x̃) ∥∇F(x̃)∥
0 1 1 49.41 65.7816
1 1.6469 1.7987 1.0766 14.0369
2 1.9091 1.6819 0.9467 9.6756
3 1.8335 1.8805 0.0727 3.8615
4 1.7901 1.861 0.0021 0.6408
5 1.7962 1.8638 0 0.012
6 1.7964 1.8638 0 0.0007
7 1.7964 1.8638 0 0.0001
8 1.7964 1.8638 0 0
9 1.7964 1.8638 0 0
10 1.7964 1.8638 0 0

Table 4. The solution of x1 and x2 of proposed algorithm compared with FIODS method

Decision Variable FIODS Algorithm Iteration Present Algorithm Iteration
x1 [1.7539, 1.7965, 1.818] 14 [1.7539, 1.7964, 1.8179] 9
x2 [1.8638, 1.9634, 2.224] 14 [1.8638, 1.9634, 2.224] 9

Figure 1. Optimal TFN solution of x1 with membership value

(1) Rosenbrock: A classic optimization benchmark.

F = 100 ∗ (x2 − (x1)2)2 + (1 − x1))2 (28)

(2) Quadratic Bowl: Simple quadratic for comparison

F = (x1 − 2)2 + (x2 − 3)2 (29)

(3) Nonlinear Sinusoidal: A challenging oscillatory function.

F = (x1)2 + (x2)2 − 10 ∗ sin(x1) − 10 ∗ sin(x2) (30)
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Figure 2. Optimal TFN solution of x2 with membership value

Figure 3. Width of TFN solution of x1 and x2

Table 5. Solution components of IFQN-DFP algorithm with three different function.

S.I Function Name Initial value Optimal solution Iteration
1 Rosenbrock Function [0, 0] [1.0000, 1.0000] 28
2 Quadratic Bowl [0, 0] [2.0000, 3.0000] 1
3 Nonlinear Sinusoidal [0, 0] [1.3064, 1.3064] 5

The width convergence plot are shown in Fig. 3, further highlights its effectiveness, in Table 1, 2 and 3 showing
as rapid decrease in objective function and norm of gradient value within the first few iterations. Further, to the
effectiveness of the proposed algorithm, the obtained TFN solutions are compared with the existing FIODS
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Figure 4. Performance profile different functions

[17] and the same is presented in Table 4 . Moreover, IFQN-DFP maintains robust performance and scalability,
demonstrating its applicability to large-scale optimization problems under fuzzy uncertainty environment.

5|Conclusion
This study presents a IFQN-DFP optimization algorithm with Armijo line search to effectively handle imprecisely
defined optimization problems. By leveraging fuzzy set theory, the algorithm models uncertainties without relying
on probabilistic assumptions, making it well-suited for problems where precise data is unavailable. The integration
of the DFP update ensures efficient Hessian approximation, while the Armijo line search adaptively controls step
sizes for stable and rapid convergence. Experimental results on benchmark and real-world optimization problems
demonstrate the algorithm’s robustness, accuracy, and superior performance compared to existing approaches.
This work provides a significant contribution to non-probabilistic optimization, offering a reliable method for
solving complex, uncertain, and nonlinear optimization problems in engineering, economics, and applied sciences.
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