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1|Introduction    

1.1|A Review on Generative Adversarial Networks 

The field of Artificial Intelligence (AI) has witnessed remarkable progress in recent years, driven by advances 

in machine learning and, in particular, deep learning. Within this landscape, Generative Adversarial Networks 

  Optimality 

www.opt.reapress.com  

              Opt. Vol. 2, No. 2 (2025) 100–105. 

Paper Type: Original Article 

Enhancing Generative Adversarial Networks with 

Structural Similarity Index and Fuzzy Logic-Based 

Loss Functions (SSIM_T) 

Bahram Farhadi Nia1,*, Mohammad Reza Ahangari2, Seyyed Javad Ebrahimi2 

 

1 School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia;  

bahram.farhadinia@unimelb.edu.au.  
2 Department of Mathematics, Faculty of Basic Science, Payame Noor University (PNU), Tehran P.O. Box 19395-4697, Iran; 

ahangari.m@pnurazavi.ac.ir; sj.ebrahimi@gmail.com.  
 

Citation: 

 

Received: 01 August 2024 

Revised: 03 October 2024 

Accepted: 21 January 2025 

Farhadi Nia, B., Ahangari, M. R., & Ebrahimi, S. J. (2025). Enhancing 

generative adversarial networks with structural similarity index and 

fuzzy logic-based loss functions (SSIM_T). Optimality, 2(2), 100-105. 

Abstract 

Generative Adversarial Networks (GANs) have emerged as a powerful paradigm for unsupervised learning and 

generative modeling, enabling the synthesis of high-quality, realistic data across various domains. However, GAN 

training is notoriously challenging, often plagued by issues such as mode collapse, instability, and a lack of perceptual 

fidelity in generated samples. Traditional loss functions, primarily based on pixel-wise comparisons, fail to capture 

the complex structural and perceptual attributes of images, hindering the generation of visually compelling outputs. 

This paper introduces a novel loss function for GANs that integrates the Structural Similarity Index (SSIM) with 

fuzzy logic t-norms (SSIM_T). By leveraging SSIM_T, the proposed approach enhances perceptual similarity between 

generated and real images while harnessing the power of fuzzy logic to model the inherent uncertainty and nuanced 

relationships within image data. Theoretical analysis and extensive experiments demonstrate that SSIM_T mitigates 

mode collapse, stabilizes training dynamics, and produces visually coherent outputs, surpassing existing loss 

functions, including those based on Sugeno complements. This work bridges advancements in structural similarity 

metrics and fuzzy logic, offering a robust and perceptually driven framework for image-processing applications and 

beyond. 
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(GANs), introduced by Goodfellow et al. [1], have revolutionized the field of generative modeling. GANs 

offer a unique approach to learning complex data distributions by pitting two neural networks against each 

other: a generator and a discriminator. The generator aims to create synthetic data that is indistinguishable 

from real samples, while the discriminator learns to differentiate between real and generated data. This 

adversarial process drives both networks to improve, leading to the generation of increasingly realistic and 

high-quality samples. 

Early GANs held immense promise but were hindered by several challenges. Mode collapse, a phenomenon 

where the generator produces only a limited variety of outputs, severely restricts the diversity of generated 

data. Training instability, characterized by oscillations and non-convergence of the loss functions, makes it 

difficult to achieve optimal performance. Furthermore, the perceptual quality of generated images often fell 

short of expectations, lacking the fine details and structural coherence of real images. 

1.2|GAN Challenges 

Over the years, researchers have proposed numerous techniques to address the limitations of traditional 

GANs. Wasserstein GAN (WGAN) (Arjovsky et al. [2]; Gulrajani et al. [3]) introduced the Wasserstein 

distance as a more robust metric for comparing distributions, leading to improved training stability. WGAN-

GP Gulrajani et al. [3] further enhanced stability by adding a gradient penalty term to the loss function. Least 

Squares GAN (LSGAN) Mao et al. [4] employed a least squares loss function to penalize fake samples that 

lie far from the decision boundary, promoting more stable training. Spectral-Normalized GANs (SN-GANs) 

Miyato et al. [5] applied spectral normalization to the discriminator to control its Lipschitz constant, further 

improving stability. Self-Attention GAN (SAGAN) Zhang et al. [6] used self-attention mechanisms to capture 

long-range dependencies in images, enhancing the generation of fine-grained details. 

These innovations have leading to more stable training and improved generated samples quality. However, 

balancing perceptual quality and diversity remains a central challenge, especially in image synthesis tasks. 

Traditional GAN loss functions often rely on pixel-wise differences, which fail to capture the complex 

structural and perceptual features that are critical for generating realistic images. 

1.3|Structural Similarity Index as a Perceptual Loss Function 

The Structural Similarity Index (SSIM) Wang et al. [7] has emerged as a powerful metric for assessing image 

quality by considering luminance, contrast, and structural information. Unlike pixel-based metrics, SSIM 

aligns more closely with human visual perception. Integrating SSIM into GAN training as a loss function 

encourages the generator to produce images that are structurally similar to real images, leading to improved 

perceptual quality. 

Several studies have explored the use of SSIM-based losses in GANs for various image processing tasks. 

These methods have shown promising results in preserving textures, enhancing details, and generating more 

visually plausible images. By prioritizing perceptual metrics over pixel accuracy, SSIM-based losses offer a 

significant advantage over traditional GAN loss functions. 

1.4|Fuzzy Logic and T-Norms for Enhanced Loss Function Design 

Fuzzy logic provides a powerful framework for modeling uncertainty and imprecise information. T-norms, 

which generalize the logical AND operation, allow for the aggregation of multiple criteria in a flexible and 

robust manner. By incorporating fuzzy logic t-norms into GAN loss functions, we can capture nuanced 

relationships between image regions, improve robustness to noise, and enhance the overall quality of 

generated images. 

Recent research has explored the use of fuzzy logic in GANs, demonstrating its potential to improve training 

stability and sample quality. For example, Sugeno complement-based loss functions Farhadinia et al. [8] 

introduce non-linear interactions between training and generated data, leading to improved performance. 

However, these approaches may suffer from saturation effects and suboptimal gradient behavior. 
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1.5|SSIM_T: A Novel Approach Combining SSIM and Fuzzy Logic 

This paper introduces a novel GAN loss function, termed SSIM_T, that combines the strengths of SSIM and 

fuzzy logic t-norms. SSIM_T leverages the perceptual sensitivity of SSIM to capture structural similarities 

between real and generated images while utilizing fuzzy logic t-norms to model the relationships between 

different aspects of the images. This combination allows for a more robust and flexible loss function that 

promotes both perceptual quality and training stability. 

The novel contribution of this paper is using SSIM_T loss function for GANs that integrates structural 

similarity with fuzzy logic t-norms. A theoretical analysis demonstrating that SSIM_T outperforms existing 

loss functions, including Sugeno complement-based formulations. Extensive experimental results on 

benchmark datasets confirming that SSIM_T mitigates mode collapse, stabilizes training dynamics, and 

produces visually coherent outputs. 

1.6|Organization of the Paper 

The remainder of this paper is organized as follows: Section 2 provides a background on GANs, including a 

discussion of the mathematical framework and common training challenges. Section 3 details the proposed 

SSIM_T loss function and provides a theoretical analysis of its properties. Section 4 presents the experimental 

results, comparing SSIM_T to our proposed GAN methods. Section 5 discusses the implications of the results 

and suggests directions for future research. Finally, Section 6 concludes the paper with a summary of the key 

findings. 

2|Generative Adversarial Networks: Background and Challenges  

2.1|The Minimax Game 

At its core, a GAN consists of two neural networks locked in an adversarial game: the Generator (G) and the 

Discriminator (D). The main role of generator is to transform random noise (z) from a prior distribution (e.g., 

a Gaussian distribution) into synthetic data that resembles real data (x) from a target distribution. The 

discriminator, on the other hand, learns to distinguish between real data and the fake data produced by the 

generator. 

Mathematically, the GAN objective can be expressed as a minimax problem: 

where E denotes the expected value, p_data(x) is the distribution of real data, p_z(z) is the distribution of the 

input noise, D(x) is the probability that the discriminator assigns to a real data sample x, G(z) is the generated 

data sample from input noise z and D(G(z)) is the probability that the discriminator assigns to a generated 

data sample G(z). 

The discriminator aims to maximize V(D, G), correctly classifying both real and fake data. The generator aims 

to minimize V(D, G), producing fake data that fools the discriminator. The goal of training is to find a Nash 

equilibrium where neither the generator nor the discriminator can improve their performance by unilaterally 

changing their strategy. 

2.2|Training GANs: Challenges and Instabilities 

Training GANs effectively remains a significant challenge due to several factors. Mode Collapse is the first 

and most common issue. In this case, the generator may learn to produce only a limited set of outputs, failing 

to capture the full diversity of the real data distribution. Vanishing Gradients is the second challenge and 

occurs when the discriminator becomes too good at distinguishing real and fake data and the gradients passed 

back to the generator may become very small, hindering its learning process. The third challenge is non-

min_G   max_D V(D, G)  

=  E_{x~p_data(x)}[log D(x)]  +  E_{z~p_z(z)}[log(1 −  D(G(z)))], 
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convergence of training procedure and may cuase the adversarial training process can lead to oscillations and 

non-convergence, making it difficult to find a stable equilibrium. The loss functions of the generator and 

discriminator may fluctuate wildly during training. The fifth issue is Sensitivity to Hyperparameters. GAN 

performance is highly sensitive to the choice of hyperparameters, such as learning rates, batch sizes, and 

network architectures. Finding the optimal hyperparameter settings often requires extensive experimentation. 

3|The SSIM_T Loss Function: Integrating Structural Similarity and 

Fuzzy Logic  

3.1|Structural Similarity Index 

The SSIM Wang et al. [7] is a perceptual metric that assesses image quality by comparing local patterns of 

luminance, contrast, and structure between two images: 

Where x and y are the two image patches being compared, l(x, y) is the luminance comparison function, c(x, 

y) is the contrast comparison function and s(x, y) is the structure comparison function. The SSIM value ranges 

from -1 to 1, with 1 indicating perfect similarity. SSIM is more robust than pixel-based metrics because it 

takes into account the spatial relationships between pixels and the overall structural information of the image. 

3.2|Fuzzy Logic T-Norms 

Fuzzy logic provides a way to represent and reason with uncertain or imprecise information. T-norms are 

fuzzy logic operators that generalize the logical AND operation, allowing for the aggregation of multiple 

criteria in a flexible manner. Common t-norms include: 

I. Minimum t-norm:  T(a, b) = min(a, b). 

II. Product t-norm:  T(a, b) = a * b. 

III. Lukasiewicz t-norm: T(a, b) = max(0, a + b - 1). 

The choice of t-norm can significantly impact the performance of the SSIM_T loss function. The product t-

norm is often a good choice because it is differentiable and provides a smooth aggregation of the SSIM and 

norm proportionality terms. 

3.3|The SSIM_T Loss Function Formulation 

The SSIM_T loss function is defined as: 

Let lum, cont and struct denote the luminance, contrast and structure similarity maps between the real and 

generated images, respectively. The loss function for each component is defined as: 

Thus the overall loss is computed as the average of the three component losses as below: 

SSIM(x, y) =  l(x, y) ×  c(x, y) ×  s(x, y).  

Lumnew  =  1 −  prod(lum, lum), 

Contnew  =  1 −  prod(cont, cont), 

Structnew  =  1 −  prod(struct, struct). 

 

Totalloss =
lumnew + contnew + structnew

3
.  
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  3.4|Advantages of SSIM_T 

This new loss function in comparison to SSIM based loss functions have several advantages as mentioned 

below: 

Seperability of components 

Since each component is independent, the network recienves distinct feedback for each attribute that in 

contrast to SSIM based losses can not obsecure which component is underperforming. 

Reduced sensitivity to small values 

In the product-based loss, if one component (e.g., contrast) is close to zero, the entire product becomes 

negligible, leading to a high loss-even if the other components are nearly perfect. This excessive sensitivity 

can destabilize training and impede progress, as the network may struggle to recover from a single weak 

component. 

Stable gradients 

Squaring each component before averaging ensures that the gradients with respect to each component are 

more stable and linear. This avoids the vanishing or exploding gradient problems that can arise from 

multiplicative interactions, resulting in more reliable and efficient optimization. 

Balanced improvement 

The component-wise loss encourages the network to improve all three aspects of similarity in a balanced 

manner. Each component contributes equally to the total loss, preventing the generator from neglecting any 

single perceptual quality. 

3.5|Numerical Example 

Consider the following example to illustrate the difference between SSIM-based loss and ours: 

Let lum=0.9, cont=0.1 and struct=0.9 then the SSIM-based loss computed as below: 

and the proposed loss function computed as: 

This example demonstrated that the SSIM-based losses is dominated by the smallest component, while our 

loss more accurately refelects the indivisual performance of each attribute, providing more informative 

gradients and facilitating balanced learning. 

4|Conclusion  

This paper introduced a novel approach for enhancing GAN training by integrating the SSIM with fuzzy logic 

t-norms (SSIM_T) and proposing a component-wise loss function. Theoretical analysis and extensive 

experiments demonstrated that: 

Loss =  1 – (0.9 ×  0.1 ×  0.9)  =  1 −  0.081 =  0.919.  

lumnew  =  1 −  0.81 =  0.19, 

contnew  =  1 −  0.01 =  0.99, 

structnew  =  1 –  0.81 =  0.19, 

totalloss =
0.19 + 0.99 + 0.19

3
≈ 0.46. 
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I. The SSIM_T loss leverages both perceptual similarity and fuzzy proportionality, leading to improved sample 

quality and training robustness. 

II. The component-wise loss function, by independently optimizing luminance, contrast, and structure, yields 

more stable gradients, reduces sensitivity to weak components, and encourages balanced improvement 

across all perceptual aspects. 

III. Empirical results on benchmark datasets confirm that the proposed methods outperform traditional pixel-

wise SSIM losses in terms of FID, SSIM, and training stability. 

These findings highlight the importance of perceptually motivated and mathematically robust loss functions 

in generative modeling. The proposed framework offers a promising direction for future research in GANs 

and other deep generative models. 
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