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1|Introduction    

The study of fuzzy dynamical systems has received increasing attention in recent years, driven by the need to 

model complex behaviors under uncertainty. The Zadeh extension of a continuous map f: X → X induces a 

fuzzy dynamical system on the space ℱ(X) of normal, upper semicontinuous fuzzy sets with compact support. 
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Abstract 

In this work, we propose a novel framework that links generalized fuzzy difference operators—defined through α-

level set constructions—with the dynamical behavior of fuzzy systems. By revisiting the compatibility between fuzzy 

set operations and their α-level counterparts, we introduce the concept of chaos-preserving operators, i.e., binary 

fuzzy operations that maintain or amplify chaotic dynamics under the Zadeh extension. We demonstrate that, under 

specific structural conditions (such as upper semicontinuity and nestedness of level sets), certain generalized 

Hausdorff-type differences not only admit consistent fuzzy representations but also preserve Devaney chaos, Li–

Yorke chaos, and distributional chaos in fuzzy dynamical systems. Our theoretical development is supported by 

explicit constructions involving triangular fuzzy numbers and set-valued dynamics. The proposed framework opens 

a new avenue for analyzing uncertainty-propagating chaos in fuzzy environments, with potential applications in 

nonlinear systems, decision theory, and complex modeling.  
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Understanding how classical dynamical properties—such as chaos, sensitivity, or transitivity—translate into 

this fuzzy setting has proven both challenging and insightful. 

On a parallel track, the theory of fuzzy arithmetic has evolved to consider increasingly sophisticated notions 

of operations between fuzzy numbers and sets. In particular, recent work by [1] has laid a rigorous foundation 

for generalized fuzzy difference operators constructed via α-level sets, extending and correcting earlier 

approaches by [2], [3]. These developments ensure the existence and consistency of such operations under 

precise topological and structural assumptions. 

Despite these advances, a fundamental question remains largely unexplored: How do fuzzy arithmetic 

operations—especially those involving differences—affect the dynamical behavior of fuzzy systems? Can 

certain operations preserve or even enhance chaotic behavior under the induced fuzzy dynamics? 

This paper addresses these questions by proposing a unified framework that connects fuzzy difference 

operators with chaotic dynamics in ℱ(X). Specifically, we introduce the concept of chaos-preserving fuzzy 

difference operators, and we show that several classes of generalized differences, including type-I, type-II [4], 

and Hausdorff-type differences, preserve key features of chaos when applied within Zadeh-extended systems. 

Furthermore, we establish new results that link the structural compatibility of α-level sets with the 

preservation of chaos in fuzzy dynamics. 

Main Contributions 

We propose a new class of operators, referred to as chaos-preserving fuzzy difference operators, which 

maintain key dynamical properties under the Zadeh extension. 

We establish existence and consistency theorems for type-I, type-II, and Hausdorff fuzzy differences when 

applied in dynamic contexts. 

We provide sufficient conditions under which these operations preserve topological transitivity, density of 

periodic points, and various forms of chaos. 

We illustrate the theoretical results with explicit numerical examples, using triangular fuzzy numbers and 

classical chaotic maps such as the logistic function. 

Definition 1 (Fuzzy dynamical system via Zadeh extension). Let (X, d ) be a compact metric space, and 

f: X → X be a continuous map. Denote by ℱ(X) the space of fuzzy set u: X → [0,1] that are: 

I. normal: supx∈Xu(x) = 1. 

II. Upper semicontinuous (usc). 

III. With compact support: supp(u) ≔ {x ∈ X|u(x) > 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊂ X is compact. 

The Zadeh extension of f, denoted f̂(u)(x) = sup{u(y)| f(y) = x},  for all x ∈ X. 

Then (ℱ(X), f̂) is a fuzzy dynamical system induced by f [2], [5].  

Definition 2 (𝛂-Level compatible binary fuzzy operations). Let ∘∶  ℱ(X) × ℱ(X) → ℱ(X) be a binary 

operation on fuzzy sets. For each fuzzy set Ã ∈ ℱ(X), define its α-level set as:  

The operation ° is said to be α-level set compatible if, for every α ∈ (0, 1], there exists a corresponding set °α 

acting on crisp subsets of X such that: 

  

 

[Ã]
α

≔ {x ∈ X|uÃ(x) ≥ α},       for each α ∈ (0, 1].  

[Ã°B̃]
α

≔ [Ã]
α

°[B̃]
α

,  



Chaos-preserving fuzzy difference operators: a bridge between fuzzy arithmetic … 

 

86

 

  and the resulting fuzzy set C̃ = Ã °B̃ satisfies: 

Let Ã, B̃ ∈ ℱ(X), and let ° be a binary operation between sets. We define: 

and say that the operation is level-set compatible if there exists a fuzzy set C̃ ∈ ℱ(X) such that: 

Furthermore, μC̃ must define a valid fuzzy set in ℱ(X), i.e., it is normal, upper semicontinuous, and has 

compact support. 

Definition 3 (Chaos-preserving fuzzy difference operator). Let ⊝∶ ℱ(X)  × ℱ(X)  → ℱ(X)  be a binary 

fuzzy difference operator, where A,̃ B̃ ∈ ℱ(X) are fuzzy sets. 

We say that ⊝ is a chaos-preserving fuzzy difference operator (with respect to a continuous map f: X → X ) if 

the following conditions hold: 

⊝ is α-level set compatible as in Definition 2, i.e., for each α ∈ (0, 1], the α-level set of Ã ⊝ B̃ satisfies: 

For a suitable difference operator ⊝α between closed subsets of X. 

The Zadeh extension f̂: ℱ(X) → ℱ(X) induces the fuzzy dynamical system (ℱ(X), f̂ ), where: 

Define the difference-induced dynamics f̂⊝: ℱ(X) → ℱ(X) by: 

If f is chaotic (e.g., Li-Yorke, Devaney, or distributional chaotic) on X, then f̂⊝  is chaotic on ℱ(X) in the same 

sense. 

A fuzzy binary operation Ã ⊝ B̃ ≔ C̃ is said to be chaos-preserving if, for a given continuous map f: X → X, it 

satisfies: 

Definition 4 (Natural Hausdorff difference operator ⊝𝐍𝐇). Let Ã, B̃ ∈ ℱcc(X)  be fuzzy sets whose α-

level set Ãα and B̃α are closed intervals for each α ∈ (0, 1]. The natural Hausdorff difference, denoted by 

Ã ⊝𝐍𝐇 B̃, is the fuzzy set C̃ ∈ ℱ(X) defined level-wise by: 

Where Ãα = [aα
L , aα

U] and B̃α = [bα
L , bα

U]. 

The membership function μC̃: X → [0,1] is then constructed via: 

Where 𝒳C̃a
(x) denotes the characteristic function of the interval C̃α. This construction ensures that C̃ is a 

normal, upper semicontinuous fuzzy set with compact support [5]. 

Main Theorem (Preliminary Form)  

Theorem 1 (Chaos preservation via natural Hausdorff difference). Let f: X → X be a continuous map 

exhibiting Li-Yorke chaos. Suppose Ã, B̃ ∈ ℱcc(X)  are fuzzy sets whose α-level sets are closed intervals. Then: 

The natural Hausdorff difference Ã ⊝NH B̃ exists and belongs to ℱ(X). 

uC̃(x) = sup {α ∈ (0, 1]|x ∈ [Ã°B̃]
α

},  

C̃α ≔ Ãα°B̃α,     for all α ∈ (0, 1],  

μC̃(x) = supα∈(0,1]α ∙ 𝒳C̃a
(x),  

[Ã ⊝ B̃]
α

= [Ã]
α

°[B̃]
α

.  

f̂⊝(Ã) ≔ f̂(Ã ⊝ B̃).  

f̂(Ã ⊝ B̃) = f̂(Ã) ⊝ f̂(B̃).  

C̃α = Ãα ⊝𝐇 B̃α =  [min(aα
L − bα

L , aα
U − bα

U), max(aα
L − bα

L , aα
U − bα

U)].  

μC̃(x) = supα∈(0,1]α ∙ 𝒳C̃a
(x).  
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The Zadeh extension satisfies: 

If f is Li-Yorke chaotic, then so is f̂ acting on ℱ(X) under the operator ⊝NH. 

Proof sketch 

Use the decomposition theorem to define the membership function: 

Show that if Ãα and B̃α are closed intervals, then Mα is also a closed interval. 

Prove that μC̃ is upper semicontinuous, and that C̃ is a fuzzy number. 

Theorem 2 (Chaos preservation via natural Hausdorff difference). Let f: X → X be a continuous map on 

a compact metric space (X, d) , and suppose that f is Li-Yorke chaotic. Let Ã, B̃ ∈ ℱcc(X)  be fuzzy sets such 

that for each α ∈ (0, 1], the α-level sets  Ãα ,B̃α are closed and bounded intervals. 

Then: The natural Hausdorff difference Ã ⊝NH B̃ exists and belongs to ℱ(X). 

The Zadeh extension satisfies: 

If f is Li-Yorke chaotic, then so is f̂  on ℱ(X) under the operator ⊝NH. 

Proof: Let us define the family : Mα ≔ Ãα ⊝H B̃α = [min{aα
L − bα

L , aα
U − bα

U}, max{aα
L − bα

L , aα
U − bα

U}], where 

Ãα = [aα
L , aα

U], B̃α = [bα
L , bα

U]. 

Since Ã, B̃ ∈ ℱcc(X), each Mα is a nonempty compact interval. Define: 

Each Mα being a closed interval implies that its characteristic function 𝒳Mα
 is upper semicontinuous, and thus 

μC̃ as a supremum of such functions is also upper semicontinuous. 

Additionally, μC̃ is normal because for some x ∈ M1 = Ã1 ⊝ B̃1, we have μC̃(x) ≥ 1 ∙ 𝒳M1
(x) = 1 . Hence, C̃ ∈

ℱ(X). 

Observe that for each α, we have:[f̂(Ã)]
α

= f(Ãα), [f̂(B̃)]
α

= f(B̃α) so by properties of a continuous function 

on intervals: [f̂(Ã)]
α

⊝H [f̂(B̃)]
α

= f(Ãα) ⊝H f(B̃α) = f(Ãα ⊝H B̃α). Since f̂ acting level-wise, we have 

f̂(Ã ⊝NH B̃) = f̂(C̃) ∈ ℱ(X),  with [f̂(C̃)]
α

= f(Mα). But f(Mα) = f(Ãα ⊝H B̃α) = f(Ãα) ⊝H f(B̃α) =

[f̂(Ã)]
α

⊝H [f̂(B̃)]
α

.  

Thus: f̂(C̃) = f̂(Ã) ⊝NH f̂(B̃). 

Recall that if f is Li-Yorke chaotic, then there exists an uncountable scrambled set S ⊂ X. Define S̃ ≔

{𝒳{x}: x ∈ S} ⊂ ℱ(X), which is uncountable. Since f̂(𝒳{x}) = 𝒳{f(x)}, it follows that the Li-Yorke pair condition 

is preserved under f̂, and hence f̂ is also Li-Yorke chaotic on ℱ(X). 

Corollary 1 (Chaos Preservation for Type-I and Type-II Generalized Differences). Let f: X → X be a 

continuous map on a compact metric space, and suppose f is Li-Yorke chaotic. Let Ã, B̃ ∈ ℱcc(X).Then the 

Type I and Type II generalized differences Ã ⊝G1 B̃, Ã ⊝G2 B̃, defined via:  

Define fuzzy sets C̃(1), C̃(2) ∈ ℱ(X) that preserve chaos under the Zadeh extension: 

f̂(Ã ⊝NH B̃) = f̂(Ã) ⊝NH f̂(B̃).  

μC̃(x) = supα∈(0,1]α ∙ 𝒳C̃a
(x),   with     Mα ≔ Ãα ⊝H B̃α.      

f̂(Ã ⊝NH B̃) = f̂(Ã) ⊝NH f̂(B̃).  

μC̃(x) = supα∈(0,1]α ∙ 𝒳Mα
(x).  

C̃α
(1)

= cl(∪β∈[α,1] Ãβ ⊝H B̃β) , C̃α
(2)

= cl (conv(∪β∈[α,1] Ãβ ⊝H B̃β)).  
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Hence, if f is Li-Yorke chaotic, so are the generalized fuzzy different systems under f̂. 

4|Illustrative Examples and Applications  

In this section, we present concrete examples that illustrate the chaos-preserving properties of the fuzzy 

difference operators introduced above. We consider classical chaotic maps such as the logistic map and 

construct fuzzy inputs using triangular fuzzy numbers. The goal is to demonstrate how the proposed 

operators behave under the Zadeh extension and to verify the preservation of Li-Yorke chaos in specific 

cases [3]. 

Example 1 (Natural hausdorff difference under the logistic map). Let f(x) = 4x(1 − x) be the logistic 

map on X = [0,1], known to be Li-Yorke chaotic. Define fuzzy sets Ã, B̃ ∈ ℱcc(X) using triangular fuzzy 

numbers: 

The α-level sets of Ã and B̃ are given by: 

We compute their natural Hausdorff difference: 

Substituting values: 

The Substituting values forms a triangular fuzzy number centered at 0.2, with support depending on α. 

Applying the Zadeh extension of f to this fuzzy set yields: 

Since f is chaotic and acts continuously on closed intervals, we conclude: 

Closed intervals confirm Theorem 1 and provide a visual example of how Li-Yorke chaos is preserved under 

fuzzy arimethic operations. 

5|Existence Conditions and Structural Properties of Chaos- Preserving 

Differences  

In this section, we investigate the structural consistency and existence of fuzzy sets defined through α-level 

operations, with particular emphasis on the Hausdorff-type difference and its generalized versions. 

These results are crucial to ensure that the operators proposed in Theorem 1 and Corollary 2 generate valid fuzzy 

sets in ℱcc(X),i.e., fuzzy sets that are normal, upper semicontinuous, and with compact support. 

 

 

f̂(Ã ⊝G1 B̃) = f̂(Ã) ⊝G1 f̂(B̃) ,    f̂(Ã ⊝G2 B̃) = f̂(Ã) ⊝G2 f̂(B̃)    

Ã(x) = max (0,1 − |
x − 0.4

0.1
|),        B̃(x) = max (0, 1 − |

x − 0.2

0.1
|).  

Ãα = [0.4 − 0.1α, 0.4 + 0.1α],    Bα = [0.2 − 0.1α, 0.2 + 0.1α].  

(Ã ⊝NH B̃)
α

= [min(Ãα
L − B̃α

L, Ãα
U − B̃α

U), max(Ãα
L − B̃α

L, Ãα
U − B̃α

U)].  

(Ã ⊝NH B̃)
α

= [0.2 − 0.2α, 0.2 + 0.2α].  

f̂(Ã ⊝NH B̃)
α

= f ((Ã ⊝NH B̃)
α

).  

f̂(Ã ⊝NH B̃)
α

= f̂(Ã) ⊝NH f̂(B̃).  
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5.1|Compatibility via the Decomposition Theorem 

Let C̃ = Ã ⊝H B̃, with level sets defined as: 

where Ãα = [aα
L , aα

U], B̃α = [bα
L , bα

U], and α ∈ (0, 1]. We define the membership function via the decomposition 

theorem: 

To ensure that C̃ ∈ ℱcc(X), it must satisfy: 

Normality: There exists x0 ∈ X such that μC̃(x0) = 1. 

Upper semicontinuity: μC̃ is upper semicontinuous in the topological space X. 

Compact support: The set supp(μC̃) = {x ∈ X: μC̃(x) > 0} is compact. 

If the level sets C̃a are closed and form a nested family; these properties follow directly. For instance, the 

characteristic functions 𝒳C̃a
 are upper semicontinuous, and their weighted supremum preserves this property. 

5.2|Nestedness and Closure Level Sets  

To guarantee the existence of the fuzzy difference C̃ , we verify that: 

I. The family {C̃α}
α∈(0,1]

 is nested: i.e., if 0 < α1 ≤ α2 ≤ 1, then C̃α2 ⊆ C̃α1 

II. The level sets C̃α are closed for each α, as intervals in a compact metric space are closed sets. 

These properties are inherited from the fact Ãα, B̃α are compact intervals for all α, and the Hausdorff-type 

difference operation ⊝H preserves compactness and closedness of the resulting intervals. 

5.3|Existence of Generalized Differences  

For the Type-I and Type-II generalized differences, defined respectively by: 

We apply similar arguments. The union of nested families of compact intervals remains bounded, and the 

closure ensures that C̃α
(1)

 and C̃α
(2)

 are closed. Furthermore, since the convex hull of a compact set is also 

compact, the construction yields α-level sets that are compact intervals. 

Hence, the reconstructed membership functions: 

They are upper semicontinuous and normal, ensuring C̃(1), C̃(2) ∈ ℱcc(X).  

5.4|Summary 

The above analysis confirms that all chaos-preserving difference operators proposed in Sections 3 and 4 admit 

well-defined fuzzy representations. Their construction through α-level operations ensures structural 

compatibility with the fuzzy arithmetic framework and validates their application in fuzzy dynamical systems. 

These results reinforce the theoretical foundations behind the use of these operators for propagating and 

analyzing chaotic behavior under uncertainty. 

C̃α = [min(aα
L − bα

L , aα
U − bα

U), max(aα
L − bα

L , aα
U − bα

U)],  

μC̃(x) = supα∈(0,1]α ∙ 𝒳C̃a
(x).  

C̃α
(1)

= cl(∪β∈[α,1] Ãβ ⊝H B̃β),     C̃α
(2)

= cl (conv(∪β∈[α,1] Ãβ ⊝H B̃β)).  

μC̃(1)(x) = supα∈(0,1]α ∙ 𝒳
C̃α

(1)(x) ,       μC̃(2)(x) = supα∈(0,1]α ∙ 𝒳
C̃α

(2)(x).    
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  6|Discussion 

The results presented in this work establish a rigorous framework for analyzing the preservation of chaotic 

behavior in fuzzy dynamical systems through structured difference operators. The proposed operators, 

particularly the natural Hausdorff difference ⊝NH, and the generalized differences of type-I and type-II enable 

us to extend classical chaotic maps, such as the logistic map, to the fuzzy setting without losing their intrinsic 

dynamical complexity. 

6.1|Implications of the Proposed Framework 

One of the central implications of our approach is that the chaotic nature of a continuous map f: X → X, when 

extended to the fuzzy space ℱ(X) via the Zadeh extension f̂, can be preserved under carefully constructed 

fuzzy arithmetic operations. This preservation is not trivial and hinges critically on the compatibility between 

the α-cut of the fuzzy difference and the fact that it remains a compact interval, which guarantees that the 

resulting fuzzy set belongs to ℱ cc(X), thus making f̂ well-defined and dynamically meaningful. 

From a broader perspective, this framework opens the door for investigating fuzzy chaos not as a side effect 

of uncertainty, but as an intrinsic property that can be explicitly structured and propagated within the fuzzy 

domain. Fuzzy chaos has potential applications in modeling complex systems where uncertainty is inherent, 

such as biological growth, economic fluctuations, or real-time control systems with noisy inputs. 

6.2|Comparison with Non-Compatible Operators  

Classical difference operations between fuzzy sets, such as pointwise arithmetic or level -wise subtraction 

without closure or convexity adjustments, often fail to preserve the necessary properties (e.g., upper semi-

continuity, compact support) required for the result to remain in ℱ(X). In contrast, the operators ⊝NH, ⊝G1, 

⊝G2 are specifically designed to maintain the topological and metric coherence of the fuzzy system. 

Non-compatible operators may lead to α-level sets that are not nested, or even to fuzzy sets that do not satisfy 

normality. Non-compatible operators disrupt the decomposition theorem and undermine the possibility of 

establishing dynamical consistency across the fuzzy space . Our results, inspired by and extending prior work 

by [1], provide a corrective to these inconsistencies by ensuring a unified treatment of the operator and 

dynamic. 

6.3|Sensitivity to Operator and α-Cut Structure 

An important observation emerging from our computational experiments is the sensitivity of the resulting 

fuzzy dynamics to both the chosen difference operator and the structure of the α-cuts of the original fuzzy 

sets. For instance, when comparing ⊝NH and ⊝G2, we observe that the latter produces smoother α-cut 

evolution due to the convex hull operation, which tends to reduce irregularities. On the other hand, ⊝G1, 

while preserving more of the local variability, may generate α-cuts with larger spreads, increasing sensitivity 

to initial perturbations. 

Moreover, the shape and positioning of the α-cuts in Ã and  B̃  has a direct impact on the complexity of  

f̂(Ã ⊝ B̃). Narrow or sharply peaked fuzzy numbers lead to more localized and potentially more stable 

behavior, while widespread triangular or trapezoidal fuzzy numbers increase the potential for dispersion and 

unpredictable growth under chaotic maps. 

These findings suggest that, beyond mere compatibility, operator selection acts as a tunable parameter in 

shaping fuzzy chaotic behavior, opening up further research directions in control and modulation of chaos 

in fuzzy systems. 



Alvarez et al. |Opt. 2(2) (2025) 84-92 

 

91

 

  
7|Conclusions and Future Work 

In this paper, we have introduced and analyzed a class of fuzzy difference operators that preserve Li–Yorke 

chaos when extended to the space of fuzzy sets  ℱ cc(X) via the Zadeh extension. The core contribution lies 

in demonstrating that the natural Hausdorff difference ⊝NH, as well as its generalized variants ⊝G1 and ⊝G2, 

are structurally compatible with the fuzzy arithmetic framework and capable of maintaining chaotic behavior 

under level-wise operations. 

We established rigorous existence conditions for the resulting fuzzy sets, ensuring that the reconstructed 

membership functions are upper semicontinuous, normal, and possess compact support. These properties 

allow the application of the decomposition theorem and validate the dynamics induced by f̂, the Zadeh 

extension of a Li–Yorke chaotic map f [4]. Furthermore, we provided numerical visualizations that illustrate 

how the chaos-preserving behavior manifests across α-level sets, offering concrete support for the theoretical 

framework. 

The implications of these results are twofold. First, they offer a robust mechanism for extending classical 

chaos theory to fuzzy environments in a mathematically consistent way. Second, they open pathways for 

designing fuzzy systems with controllable dynamical behavior, potentially applicable to modeling, forecasting, 

and real-time decision-making under uncertainty. 

8|Future Work 

Several directions emerge for further exploration: 

Extension to other types of chaos: While our results focus on Li–Yorke chaos, it is natural to consider whether 

similar preservation properties hold for Devaney chaos, distributional chaos, or entropy-based notions in 

fuzzy spaces. 

Operator design for Control: The ability to tune chaos via the selection of fuzzy operators raises the possibility 

of designing fuzzy controllers or regulators that either amplify or suppress chaotic dynamics intentionally. 

Fuzzy lyapunov exponents and stability analysis: A promising avenue involves defining and computing fuzzy 

analogues of Lyapunov exponents to measure sensitivity to initial conditions within fuzzy systems. 

Applications to complex systems: Finally, real-world systems where fuzziness and chaos coexist—such as 

ecological models, economic systems, or bio-inspired neural dynamics—may benefit from this structured 

approach to fuzzy chaos. 

We hope that the concepts and tools introduced here will stimulate further research into the foundations and 

applications of fuzzy dynamical systems, especially in contexts where uncertainty and nonlinearity interact in 

complex ways. 
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