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Abstract

A rational Diophantine 3-tuple is a family of three non-zero rationals x, y, z with the property D(n) such
that xy + n, yz + n, xz + n are perfect squares. In this paper, a pair of rational polynomials and some
special figurate numbers are scrutinized for their extension as triples and are proved to be non-extendable
as quadruples.

Keywords: Diophantine triples, Diophantine quadruples, Regular rational diophantine triples, Irregular
rational diophantine quadruples.

1|Introduction
The necessary literature survey that paved us a way to write this paper is given as follows: A collection
{x1, x2 · · ·xm} of m distinct non-zero rationals is called a rational Diophantine m-tuple if xixj + 1 is a perfect
square for all 1 ≤ i < j ≤ m [1].The greek Mathematician Diophantus of Alexandria first analysed the
problem of searching four numbers such that the product of any two of them increased by unity is a perfect
square.He spotted a set of four positive rationals

{ 1
16 ,

33
16 ,

17
4 ,

105
16

}
with this property.Followed by Diophantus

many Mathematicians [2–4] searched the triples or quadruples that can be extended to the next consecutive

tuples.Recently Gibbs found the first rational Diophantine sextuple
{

11
192 ,

35
192 ,

155
27 ,

512
27 ,

1235
48 ,

180873
16

}
.

Meanwhile Dujella, Kazalicki, Mikic and Szikszai proved that there are infinitely many rational Diophantine
sextuples.Though these legends discovered the Diophantine
m-tuples that are extendible,there are some cases where the rational Diophantine triples cannot be extended to
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a rational Diophantine quadruple [5, 6]. In this paper we have focused on such kind of numbers say rational
polynomials,polygonal numbers,
Centered pyramidal numbers and so on.We prove their non-extendability by showing that any two numbers of
those quadruples does not meet the requirement of Diophantine m-tuples for the particular property. To acquire
deep knowledge in Diophantine m-tuples and their generalizations, the readers are diverted to [7].

Definition 1. A set of m nonzero rationals {a1, a2 · · · am} is called a Regular
Diophantine m-tuple if aiaj + q is a perfect square for all i, j = 1, 2, · · ·m.If the condition is not satisfied for any
one pair of (ai, aj), then it is known as an irregular
Diophantine m-tuple.

2|Regular Diophantine triples and irregular Diophantine
quadruples with respect to Rational Numbers
Problem 1: Consider the 2-tuple (RQ1, RQ2) =

(
1

4W ,
1

n2W

)
satisfying the

property D(n2W 2 + 1) ∀ n ≥ 3. To search for its extendability, let RQ3 be any other rational number with the
same property. Here we can see that

RQ1.RQ3 + (n2W 2 + 1) = ψ2 (1)
RQ2.RQ3 + (n2W 2 + 1) = Ω2 (2)

Eliminating RQ3 between (1) and (2), we get

(n2W 2 + 1)(RQ2 −RQ1) = ψ2RQ2 − Ω2RQ1 (3)

The choice
ψ = j +RQ1H; Ω = j +RQ2H (4)

Substitute equation (4) in equation (3) which yields the succeeding equation

(n2W 2 + 1) = j2 − RQ1.RQ2H
2. For the choice H = 1,the values of j, ψ are found to be j = 1 + 2n2W 2

2nW ,

ψ = 4n2W 2 + n+ 2
4nW . The values of ψ can be employed to derive the rational number RQ3 = (n+ 2)2 +W 2(8n3)

4n2W
.

Hence (RQ1, RQ2, RQ3) is a Regular rational Diophantine triple with property D(n2W 2 + 1),∀n ≥ 3.

Theorem 0.1. Let RQ1 = 1
4W ,RQ2 = 1

n2W
,RQ3 = (n+ 2)2 +W 2(8n3)

4n2W
and

RQ4 = (n+ 4)2 + 16n3W 2

4n2W
.Then (RQ1, RQ2, RQ3, RQ4) is an Irregular rational Diophantine quadruple with the

property D(n2W 2 + 1) ,∀ n ≥ 3.

Proof:

RQ1RQ2 + (n2W 2 + 1) =
(

1
4W

) (
1

n2W

)
+ (n2W 2 + 1) =

(
1 + 2n2W 2

2nW

)2

RQ1RQ3 + (n2W 2 + 1) =
(

(n+ 2) + 4n2W 2

4nW

)2

RQ1RQ4 + (n2W 2 + 1) = (n+ 4)2 + (16n3)W 2 + 16n4W 4 + 16n2W 2

16n2W 2

RQ2RQ3 + (n2W 2 + 1) =
(

(n+ 2) + 2n3W 2

2n2W

)2



RQ2RQ4 + (n2W 2 + 1) =
(

1
n2W

) (
(n+ 4)2 + 16n3W 2

4n2W

)
+ (n2W 2 + 1)

=
(

(n+ 4) + 2n3W 2

2n2W

)2

RQ3RQ4 + (n2W 2 + 1) =
(

(n+ 2)2 +W 2(8n3)
4n2W

) (
(n+ 4)2 + 16n3W 2

4n2W

)
+ (n2W 2 + 1)

=
(

(n2 + 6n+ 8) + 12n3W 2

4n2W

)2

For all the combinations of the triples satisfying D(n2W 2 + 1) ,∀ n ≥ 3, except
RQ1RQ4 + (n2W 2 + 1) are perfect Squares. Hence (RQ1, RQ2, RQ3, RQ4) is an Irregular rational Diophantine
quadruple.

Corollary 0.1. Let RQ1 = 1
4W ,RQ2 = 1

n2W
,RQ3 = (n+ 2)2 +W 2(8n3)

4n2W
and

RQ4 = (n+ 4)2 + 16n3W 2

4n2W
.Then (RQ1, RQ2, RQ3, RQ4) is a D(n2W 2−1) ∀ n ≥ 3, Irregular rational Diophantine

quadruple.

Example:

Table 1. Irregular rational Diophantine quadruple.

n ≥ 3 (RQ1, RQ2, RQ3, RQ4) D(n2W 2 + 1)

3
(

1
4W ,

1
32W

,
216W 2 + 52

62W
,

432W 2 + 72

62W

)
D(32W 2 + 1)

4
(

1
4W ,

1
42W

,
128W 2 + 32

42W
,

16W 2 + 1
W

)
D(42W 2 + 1)

5
(

1
4W ,

1
52W

,
1000W 2 + 72

102W
,

2000W 2 + 92

102W

)
D(52W 2 + 1)

Problem 2: Examine the 2-tuple (RQ5, RQ6) =
(

1
W1

,
1

4n1W1

)
fulfilling the property D(4n1W 2

1 + 2).To

determine whether it can be extended, let RQ7 be a
different rational number, achieving the same property. Here we can see that

RQ5RQ7 + (4n1W 2
1 + 2) = ψ2 (5)

RQ6RQ7 + (4n1W 2
1 + 2) = Ω2 (6)

Applying the same procedure described in the previous problem, it is obtained the Regular rational Diophantine

triple,
(

1
W1

,
1

4n1W1
,

(1 + 2n1)2 + 2(8n1)W 2
1

4n1W1

)
satisfying D(4n1W 2

1 + 2).

Theorem 0.2. Let RQ5 = 1
W1

, RQ6 = 1
4n1W1

, RQ7 = (1 + 2n1)2 + 2(8n1)W 2
1

4n1W1

and RQ8 = (2 + 2n1)2 + 4(8n1)W 2
1

4n1W1
.Then (RQ5, RQ6, RQ7, RQ8)is a

D(4n1W 2
1 + 2) Irregular rational Diophantine quadruple.
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Proof:

RQ5RQ6 + (4n1W 2
1 + 2) =

(
1
W1

) (
1

4n1W1

)
+ (4n1W 2

1 + 2)

=
(

1 + 4n1W 2
1

2n1W1

)2

=
(

(1 + 2n1) + 4n1W 2
1

2n1W1

)2

RQ5RQ7 + (4n1W 2
1 + 2) =

(
1
W1

) (
(1 + 2n1)2 + 2(8n1)W 2

1
4n1W1

)
+ (4n1W 2

1 + 2)

=
(

(1 + 2n1) + 4n1W 2
1

2n1W1

)2

RQ5RQ8 + (4n1W 2
1 + 2) = (2 + 2n1)2 + (4n1W 2

1 )2 + 2(4n1)W 2
1 (2(2n1) + 1)

(2n1W1)2

RQ6RQ7 + (4n1W 2
1 + 2) =

(
1

4n1W1

) (
(1 + 2n1)2 + 2(8n1)W 2

1
4n1W1

)
+ (4n1W 2

1 + 2)

=
(

(1 + 2n1) + 8n1W 2
1

4n1W1

)2

RQ6RQ8 + (4n1W 2
1 + 2) =

(
1

4n1W1

) (
(2 + 2n1)2 + 4(8n1)W 2

1
4n1W1

)
+ (4n1W 2

1 + 2)

RQ6RQ8 + (4n1W 2
1 + 2) =

(
(2 + 2n1) + 8n1W 2

1
4n1W1

)2

RQ7RQ8 + (4n1W 2
1 + 2) =

(
(1 + 2n1)2 + 2(8n1)W 2

1
4n1W1

) (
(2 + 2n1)2 + 4(8n1)W 2

1
4n1W1

)
+ (4n1W 2

1 + 2)

=
(

(2 + 3(2n1) + 4n1) + 3(8n1)W 2
1

4n1W1

)2

Since RQ5.RQ8 + (4n1W 2
1 + 2) is not perfect square, (RQ5, RQ6, RQ7, RQ8) is an

irregular rational Diophantine quadruple.

Corollary 0.2. Let RQ5 = 1
W1

, RQ6 = 1
4n1W1

, RQ7 = (1 + 2n1)2 + 2(8n1)W 2
1

4n1W1

and RQ8 = (2 + 2n1)2 + 4(8n1)W 2
1

4n1W1
.Then (RQ5, RQ6, RQ7, RQ8)is a

D(4n1W 2
1 − 2) Irregular rational Diophantine quadruple.

3|Regular rational Diophantine triples and irregular rational
Diophantine quadruples with respect to the general formula
for the Polygonal Numbers
Problem:
Consider the 2-tuple

(
GP n1 = (2W + 1)n2 − (2W − 1)n

2 , GP n2 = (3W + 1)n2 − (3W − 1)n
2

)
rewarding

the propertyD
(
n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)

4

)
.To ascertain whether it can be
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extended,let GP n3 be a rational number such that

GP n1GP n3 + n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)
4 = θ2 (7)

GP n2GP n3 + n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)
4 = τ2 (8)

Eliminating GP n3 between (7) and (8)we get(
n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)

4

)
(GP n2 −GP n1)

= θ2GP n2 − τ2GP n1 (9)
Consider

θ = j +GP n1H; τ = j +GP n2H (10)
The application of the equation (11) in equation(9),we get new equation(
n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)

4

)
= j2 −GP n1GP n2H

2

Consider H = 1.We get j = 3Wn2

2 , deputy j and H in θ, θ = (5W + 1)n2 − (2W − 1)n
2

The rational number can be determined using the value of θ

GP n3 = n4(22W 2 + 15W + 2) − n3(32W 2 − 6W − 4) + n2(10W 2 − 9W + 2)
2[(2W + 1)n2 − (2W − 1)n]

Hence(GP n1 , GP n2 , GP n3) is a Regular rational Diophantine triple with the Property

D

(
n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)

4

)
Theorem 0.3. Let GP n1 = (2W + 1)n2 − (2W − 1)n

2 ,

GP n2 = (3W + 1)n2 − (3W − 1)n
2 ,

GP n3 = n4(22W 2 + 15W + 2) − n3(32W 2 − 6W − 4) + n2(10W 2 − 9W + 2)
2[(2W + 1)n2 − (2W − 1)n] and

GP n4 = n4(78W 2 + 41W + 5) + n3(−120W 2 + 12W + 10) + n2(42W 2 − 29W + 5)
2[(3W + 1)n2 − (3W − 1)n] .

Then (GP n1 , GP n2 , GP n3 , GP n4) is a

D

(
n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)

4

)
irregular

rational Diophantine quadruple.

Proof : For all the combinations of the quadruple satisfying

D

(
n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)

4

)
,except

GP n1 .GP n4 +
(
n4(3W 2 − 5W − 1) + n3(12W 2 − 2) − n2(6W 2 − 5W + 1)

4

)
are perfect Squares. Hence

(GP n1 , GP n2 , GP n3 , GP n4)is an Irregular
rational Diophantine quadruple. □

Example:
Consider the general expression for Heptagonal and Nonagonal numbers, we get the Regular rational Diophantine
quadruple triple(

5n2 − 3n
2 ,

7n2 − 5n
2 ,

60n4 − 56n3 + 12n2

5n2 − 3n

)
with the property D

(
n4 + 46n3 − 15n2

4

)
and irregular rational

Diophantine quadruple(
5n2 − 3n

2 ,
7n2 − 5n

2 ,
60n4 − 56n3 + 12n2

5n2 − 3n ,
399n3 − 446n2 + 115n

2(7n− 5)

)
with the same

property.
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4|Regular rational Diophantine triples and irregular rational
Diophantine quadruples with respect to Centered Pyramidal
Numbers
Let

(
CPS = n(2n2 + 1)

3 , CPO = n(4n2 − 1)
3

)
be the centered square pyramidal and centered octagonal

pyramidal Numbers,such that CPSCPO +
(

−7n6 + 2n2

9

)
is a perfect square.We assume that CPN is the third

element in the aforementioned pair in order to check its extendability.Next,it fulfills the set of equations

CPSCPN +
(

−7n6 + 2n2

9

)
= A2 (11)

CPOCPN +
(

−7n6 + 2n2

9

)
= B2 (12)

Setting A = X + CPST,B = X + CP0T and subtracting (11) from (12),we obtain CPN = 16n5 + 12n3 + 2n
3(2n2 + 1) .

Hence (CPS , CPO, CPN ) is a Regular rational Diophantine triple with the property D
(

−7n6 + 2n2

9

)
.

Theorem 0.4. Let CPS = n(2n2 + 1)
3 ,CPO = n(4n2 − 1)

3 ,CPN = 16n5 + 12n3 + 2n
3(2n2 + 1) and CPM =

88n5 − 18n3 − n

3(4n2 − 1) .Then (CPS , CPO, CPN , CPM ) is an irregular rational Diophantine quadruple with

D

(
−7n6 + 2n2

9

)
.

Proof : For all the combinations of the quadruple satisfyingD
(

−7n6 + 2n2

9

)
,except CPS .CPM +

(
−7n6 + 2n2

9

)
are perfect squares.Hence (CPS , CPO, CPN , CPM ) is an irregular rational Diophantine quadruple. □

5|Conclusion
Recent research focuses on generation of Diophantine triples and quadruples from a diophantine pair with suitable
property which involves polynomials.In this paper, we have come to the conclusion that not all the rational
diophantine pairs and triples can be extended to rational diophantine triples and quadruples respectively.We
have associated the special figurate numbers to prove the non-extendability.Researchers may search for other
rational numbers to examine their extendability with suitable properties.
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