
        Corresponding Author: sadia.sheema63@gmail.com 

        https://doi.org/10.22105/opt.v2i1.75      

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

1|Introduction    

Most of the real-life problems are such that they require integer solutions and non-integral solutions do not 

create any sense for such problems. For example, a car manufacturing unit cannot manufacture cars in 

fractions, similar to problems like the distribution of goods; scheduling, machine sequencing, etc. The solution 

should have an integer value. Other problems include planning problems such as capital budgeting, facility 

location, portfolio analysis, and design problems such as communication and transport network design, circuit 

design, and the design of automated production systems. Integer programming (IP) is a mathematical 

optimization technique used to find the best solution to a problem within a defined set of constraints, where 

  Optimality 

www.opt.reapress.com 

               Opt. Vol. x, No. 2, No. 1 (2025) 52–62. 

Paper Type: Original Article 

Integer Programming Problems with Fermatean Fuzzy 

Parameters Using NAZ-Cut 

Sheema Sadia* 

 

1 Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh, 202002, India; sadia.sheema63@gmail.com. 

 

Citation: 

 

Received: 08 July 2024 

Revised: 06 September 2024 

Accepted: 04 November 2024 

Sadia, Sh. (2025).  Integer programming problems with fermatean fuzzy 

parameters using NAZ-cut. Optimality, 2(1), 52-62. 

Abstract 

Integer Programming Problems (IPPs) play a critical role in solving real-world optimization scenarios where decision 

variables must be integers, such as in scheduling, logistics, and resource allocation. Traditional methods like Branch 

and Bound and Cutting Plane techniques have been widely used for solving such problems. In 2003, Bari and Ahmad 

introduced the NAZ-cut method, a straightforward and computationally efficient approach to solving IPPs by 

systematically reducing the feasible solution space through the addition of specific constraints. This paper presents 

an enhanced NAZ-cut framework for solving IPPs, particularly in the context of Fermatean fuzzy environments, 

where uncertainty in parameters is modeled using Fermatean fuzzy sets. A new approach is proposed to minimize 

computational effort by excluding specific integer candidate solutions based on a well-defined criterion. A supporting 

theorem is provided to justify this exclusion, ensuring that only feasible and potentially optimal points are considered. 

The method is demonstrated through a numerical example, highlighting the effectiveness of the proposed strategy in 

simplifying the search process and improving computational efficiency. 

Keywords: NAZ cut, Fermatean fuzzy paramaters, Branch and bound methods, Cutting plane methods, 
Optimization. 

mailto:dastam66@gmail.com
mailto:sadia.sheema63@gmail.com
http://www.opt.reapress.com/
mailto:sadia.sheema63@gmail.com


 Sadia | Opt. 2(1) (2025) 52-62 

 

53

 

  
some or all of the decision variables are required to take on integer values [1], [2]. This characteristic 

distinguishes IP from Linear Programming (LP), which allows decision variables to take any value within a 

continuous range. The integrality constraint in IP is crucial in applications where variables represent discrete 

items, such as the number of products to produce, people to assign, or vehicles to route [3], [4]. 

IPP can be classified into different types based on the nature of the integer constraints [5]. Pure Integer 

Programming Problems (IPPs) involve decision variables that are all integers, while Mixed-Integer 

Programming (MIP) problems have both integer and continuous variables [6], [7]. Another variant, Binary 

Integer Programming (BIP), restricts some or all decision variables to binary values (0 or 1), making it 

particularly useful for modeling yes/no decisions or selection problems [6]. The formulation of an IP problem 

typically involves three components: an objective function, a set of decision variables, and a set of constraints. 

The objective function represents the goal of the optimization, such as maximizing profit or minimizing cost. 

The constraints define the limitations or requirements that the solution must satisfy, such as resource 

availability or capacity limits. IP models are widely used in various fields, including operations research, 

logistics, finance, and manufacturing, due to their ability to model real-world situations involving discrete 

choices and logical conditions [8], [9]. 

In recent years, modeling uncertainty in real-world optimization problems has gained significant attention. 

Classical IP assumes that all parameters are known with certainty; however, in practice, many problems 

involve vagueness, imprecision, or incomplete information. To address this, fuzzy set theory has been applied 

to mathematical programming. Among the various fuzzy models, Fermatean fuzzy sets—an extension of 

Intuitionistic and Pythagorean fuzzy sets—offer a more flexible and expressive framework for handling 

uncertainty. Incorporating Fermatean fuzzy parameters into IPPs allows decision-makers to capture a higher 

degree of hesitation and uncertainty in the problem data. This paper extends the NAZ-cut approach to handle 

IPPs with Fermatean fuzzy parameters, offering a novel solution technique that is both computationally 

efficient and robust under fuzzy uncertainty. 

Despite its widespread applicability, solving IP problems can be computationally challenging. Unlike LP 

problems, which can be efficiently solved using polynomial-time algorithms like the Simplex method or 

interior-point methods [10], IP problems are often NP-hard [11]. This means that as the problem size 

increases, the time required to find an optimal solution can grow exponentially. As a result, exact algorithms 

like branch and bound [12], cutting planes method [13], and branch and cut are employed, though they may 

be computationally intensive [14]. In practice, heuristic and metaheuristic methods, such as genetic 

algorithms, simulated annealing, and tabu search, are frequently used to find near-optimal solutions within a 

reasonable time frame. A mathematical programming problem (MPP) with integer restrictions is termed an 

IPP and the mathematical formulation of IPP with fermatean fuzzy parameters is given as follows: 

If all x̃j are integer, i.e. all the variables x̃j are restricted to have integer values, the problem is called a pure 

IPP. Otherwise, if some and not all x̃j are integer then it is a mixed IPP. As we have seen IPP is very useful, 

particularly in real-life problems. So, it was very important to develop some methods to solve IPPs [15]. The 

crisp mathematical model is represented as follows: 

max Z̃ = g0(x̃1, x̃2, . . . , x̃n), 

s.t. 

gi(x̃1, x̃2, . . . , x̃n) ≤ or = or ≥ b̃i, i = 1, 2, … , m, 

x̃j ≥ 0, j ∈ N ≡ {1 ,2 , . . . , n},

x̃j integer.
 

(1) 



 Integer programming problems with fermatean fuzzy parameters using NAZ-cut 

 

54

 

  

Mathematical programming approaches to solve IPPs are very important in today’s world. Dantzig et al. [16] 

and Markowitz and Manne [17] were the first whose works drew the attention of researchers to visualize the 

importance of solving linear programs in integers. Gomory [18], [19] developed the first finite cutting 

algorithm for the pure IPP. Ben-Israel and Charnes [20] introduced the primal algorithm of the IPP with 

various variables.  After that, Young [21] developed a finite primal algorithm in the field of IPP and 

mathematical programming problems. A method using Benders [22] partitioning scheme was devised by 

Harris [23] for MIP. Trotter and Shetty [24] proposed an algorithm for the bounded variable pure IPPs. 

Granot and Granot [25] constructed a new cutting plane algorithm for solving integer fractional programming 

and mixed integer fractional programming problems using Charnes and Cooper [20]. approach for solving 

the integer continuous fractional programs. 

Then came the concept of branch and bound in mathematical programming. Land and Doig [26] developed 

the branch and bound algorithm first time for solving the pure and mixed IPP. Bertier and Roy [27] later, 

presented a general theory for branching and bounding. Balas [28] restated their theory in a far simpler form 

which Mitten [29] generalized and extended slightly. A lot more work has been done on integer and mixed 

IPPs. Few of them represent a lot of work in the field of IPPs (Guignard and Spielberg [30], Lenstra [31], 

Hoffman and Padberg [32], Savelsberg [33], Balas et al. [34], Weismantel [35]).  Some recent works to solve 

the integer pure and mix programming problem using different approaches (Kesavana et al., [36], Frangioni 

and Gentile [37], Vyve and Wolsey [38], Lay and Jacobson [39], Cadoux [40], Basu et. al. [41], Jansen and 

Rohwedder [42], Hooker [43], Goswami [44]. 

2|Formulation of the Problem 

The basic definitions of the Farmatean fuzzy programming, which are used in our proposed work, which is 

given below: 

Definition 1. According to [45] Farmatean fuzzy sets: A Farmatean Fuzzy Sets (FFSs) can be represented 

as ℱ̃ = {〈ω, αℱ̃(ω), βℱ̃(ω): ω ∈ X 〉}, 

where αℱ̃(ω): X → [0,1] is the degree of satisfaction, and βℱ̃(ω): X → [0,1] is the degree of dissatisfaction, 

including the conditions. 

0 ≤ αℱ̃(ω)3 + βℱ̃(ω)3 ≤ 1 for all ω ∈ X . For any FFSs ℱ̃ and ω ∈ X, 

σℱ̃(ω) = √1 − (αℱ̃(ω))3 − (βℱ̃(ω))33   is identified as the degree of indeterminacy of ω ∈ X to ℱ̃.The set ℱ̃ =

{〈ω, αℱ̃(ω), βℱ̃(ω): ω ∈ X 〉} is denotes as ℱ̃ = 〈αℱ̃ , βℱ̃〉.” 

Definition 2. Let ℱ̃ = 〈αℱ̃ , βℱ̃〉, ℱ̃1 = 〈αℱ̃1
, βℱ̃1

〉, and ℱ̃2 = 〈αℱ̃2
, βℱ̃2

〉 be three FFSs on the universal set X, and 

ζ > 0 be any scalar, then arithmetic operations of FFSs is as follows with numerical examples. 

Let ℱ̃ = 〈0.4, 0.7〉 , ℱ̃1 = 〈0.8, 0.6〉 and ℱ̃2 = 〈0.2, 0.9〉 be three FFSs and ζ = 2 be any scalar quantity. Then, 

max Z̃ = g0(S(x̃1, x̃2, . . . , x̃n)), 

s.t. 

gi(S(x̃1, x̃2, . . . , x̃n)) ≤ or = or ≥ S(b̃i), i = 1, 2, … , m, 

S(x̃j) ≥ 0, j ∈ N ≡ {1 ,2 , . . . , n},

S(x̃j) integer.
 

(2) 

ℱ̃1 ⊕ ℱ̃2 = (√αℱ̃1
3 + αℱ̃2

3 − αℱ̃1
3αℱ̃2

3,
3

  βℱ̃1
βℱ̃2

 ).  

ℱ̃1 ⊕ ℱ̃2 = 〈0.8, 0.6〉 ⊕ 〈0.2, 0.9〉 = (0.8020, 0.54).  



 Sadia | Opt. 2(1) (2025) 52-62 

 

55

 

  

Definition 3. Let ℱ̃ = 〈αℱ̃ , βℱ̃〉, ℱ̃1 = 〈αℱ̃1
, βℱ̃1

〉, and ℱ̃2 = 〈αℱ̃2
, βℱ̃2

〉 be three FFSs on the universal set X, and 

ζ > 0 be any scalar, then their arithmetic operations of FFS define as follows: 

Theorem 1. Let ℱ̃ be a FFSs ℱ̃ = 〈αℱ̃ , βℱ̃〉 then the score function ℱ̃ represented simply proceeds: Sℱ̃ 
∗(ℱ̃ ) =

1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)). 

Property 1: Consider a FFSs ℱ̃ = 〈αℱ̃ , βℱ̃〉, then Sℱ̃ 
∗(ℱ̃ ) ∈ [0,1]. 

Proof: According to the ortho-pair definition, αℱ̃ , βℱ̃ ∈ [0,1]. Then, min(αℱ̃ , βℱ̃) ∈ [0,1], and also αℱ̃
3 ≥ o, 

βℱ̃
3 ≥ 0, αℱ̃

3 ≤ 1, and βℱ̃
3 ≤ 1. 

⇒ 1 − βℱ̃
3 ≥ 0, ⇒ 1 + αℱ̃

3 − βℱ̃
3 ≥ 0, ∴

1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)) ≥ 0. 

Again αℱ̃
3 − βℱ̃

3 ≤ 1, add one both sides. 

Hence, Sℱ̃ 
∗(ℱ̃ ) ∈ [0,1]. 

Theorem 2. Let ℱ̃ be a FFSs ℱ̃ = 〈αℱ̃ , βℱ̃〉 then the NFFSF ℱ̃1d represented simply as follows: Sℱ̃ 
∗(ℱ̃1d) =

1

2
(1 + αℱ̃ − βℱ̃). (min(αℱ̃ , βℱ̃))2. 

Property 1: Consider a FFSs ℱ̃ = 〈αℱ̃ , βℱ̃〉, then Sℱ̃ 
∗(ℱ̃1d) ∈ [0,1]. 

Proof: According to the ortho-pair definition, αℱ̃ , βℱ̃ ∈ [0,1]. Then, min(αℱ̃ , βℱ̃) ∈ [0,1], and also αℱ̃ ≥ o, 

βℱ̃ ≥ 0, αℱ̃ ≤ 1, and βℱ̃ ≤ 1. 

ℱ̃1 ⊗ ℱ̃2 = (αℱ̃1
αℱ̃2

, √βℱ̃1

3 + βℱ̃2

3 − βℱ̃1

3βℱ̃2

33
 ), 

ℱ̃1 ⊗ ℱ̃2 = 〈0.8, 0.6〉 ⊕ 〈0.2, 0.9〉 = (0.16, 0.923). 

 

ζ ⊙ ℱ̃ = (√1 − (1 − αℱ̃
3)ζ

3
, βℱ̃

ζ), 

ζ ⊙ ℱ̃ = 2 ⊙ 〈0.4, 0.7〉 = (0.498, 0.49). 

 

ℱ̃ζ = (αℱ̃
ζ, √1 − (1 − βℱ̃

3)
ζ3

). 

ℱ̃ζ = 〈0.4, 0.7〉2 = (0.064,0.828). 

 

ℱ̃1⋃ℱ̃2 = (max{αℱ̃1
, αℱ̃2

} , min{βℱ̃1
, βℱ̃2

}), 

ℱ̃1⋃ℱ̃2 = (max{〈0.8, 0.6〉} , min{〈0.2, 0.9〉}) = (0.8, 0.2). 
 

ℱ̃1⋂ℱ̃2 = (min{αℱ̃1
, αℱ̃2

} , max{βℱ̃1
, βℱ̃2

}). 

ℱ̃1⋂ℱ̃2 = (min{〈0.8, 0.6〉} , max{〈0.2, 0.9〉}) = (0.2, 0.6). 
 

ℱ̃c = (βℱ̃ , αℱ̃). 

ℱ̃c = 〈0.4, 0.7〉c = (0.7,0.4). 
 

⇒ 1 + αℱ̃
3 − βℱ̃

3 ≤ 2  (∵ αℱ̃
3 ≥ 0), 

⇒
1

2
(1 + αℱ̃

3 − βℱ̃
3). (min(αℱ̃ , βℱ̃)) ≤ 1   (∵ min(αℱ̃ , βℱ̃) ≤ 1). 

 

⇒ 1 − βℱ̃ ≥ 0, ⇒ 1 + αℱ̃ − βℱ̃ ≥ 0,∴
1

2
(1 + αℱ̃ − βℱ̃). (min(αℱ̃ , βℱ̃))2 ≥ 0.  



 Integer programming problems with fermatean fuzzy parameters using NAZ-cut 

 

56

 

  Again, αℱ̃ ≤ 1, and βℱ̃ ≤ 1, αℱ̃ − βℱ̃ ≤ 1, add one both sides. 

Hence, Sℱ̃ 
∗(ℱ̃1d) ∈ [0,1]. 

Theorem 3. Let ℱ̃ be a FFSs  ℱ̃ = 〈αℱ̃ , βℱ̃〉 then the Type 1 score function  ℱ̃1 represented as follows: 

Type-1 Fermatean fuzzy score function  Sℱ̃ 
∗(ℱ̃11) =

1

2
(1 + αℱ̃

2 − βℱ̃
2). 

According to the ortho-pair definition, αℱ̃ , βℱ̃ ∈ [0,1], and αℱ̃
2 ≥ o, βℱ̃

2 ≥ 0, αℱ̃
2 ≤ 1, and βℱ̃

2 ≤ 1. 

Now, again, αℱ̃
2 − βℱ̃

2 ≤ 1, add on both sides. 

Hence, Sℱ̃ 
∗(ℱ̃11) ∈ [0,1]. Similarly, 

Type-2 Fermatean fuzzy score function  Sℱ̃ 
∗(ℱ̃12) =

1

3
(1 + 2αℱ̃

3 − βℱ̃
3). 

Type-3 Fermatean fuzzy score function  Sℱ̃ 
∗(ℱ̃13) =

1

2
(1 + αℱ̃

2 − βℱ̃
2). |αℱ̃ − βℱ̃|. 

Let  ℱ̃1 = 〈αℱ̃1
, βℱ̃1

〉, and ℱ̃2 = 〈αℱ̃2
, βℱ̃2

〉 be two FFSs, then the following operations will be satisfied: 

Consider the following Pure Integer Programming Problem (PIPP) 

Where c∗are the fermatean fuzzy coefficients representing the contribution of each variable x to the fermaten 

fuzzy objective function, x = (x1,x2 … xn), A is m × n matrix of coefficient, and b is an m − dimensional vector 

of constants. 

Let us consider that Linear Programming Problem (LPP), neglecting the integer restrictions on the variables 

as Linear Programming Relaxation (LPR). First, we solve the LPR problem. Let the solution obtained be x∗ 

and is all integer. It implies that the problem is solved. Now consider the case when the solution is not an 

integer and let the kth component of x∗ be xk = ak
∗ . The nearest integer values to xk are represented as follows: 

⇒ 1 + αℱ̃ − βℱ̃ ≤ 2 ⇒ (min(αℱ̃ , βℱ̃) ≤ 1) ⇒ (min(αℱ̃ , βℱ̃))2 ≤ 1, 

⇒
1

2
(1 + αℱ̃ − βℱ̃). (min(αℱ̃ , βℱ̃))2  ≤ 1  (∵ (min(αℱ̃ , βℱ̃))2  ≤ 1). 

 

⇒ 1 − βℱ̃
2 ≥ 0, ⇒ 1 + αℱ̃

2 − βℱ̃
2 ≥ 0 ∴

1

2
(1 + αℱ̃

2 − βℱ̃
2) ≥ 0.  

⇒ 1 + αℱ̃
2 − βℱ̃

2 ≥ 2  (∵ αℱ̃
2 ≥ 0), 

⇒
1

2
(1 + αℱ̃

2 − βℱ̃
2) ≥   (∵ 〈αℱ̃ , βℱ̃〉 ≤ 1). 

 

Sℱ̃ 
∗(ℱ̃1 ) ≥ Sℱ̃ 

∗(ℱ̃2 ) with Aℱ̃(ℱ̃1) > Aℱ̃(ℱ̃2)  iff  ℱ̃1 > ℱ̃2. 

Sℱ̃ 
∗(ℱ̃1 ) ≤ Sℱ̃ 

∗(ℱ̃2 ) with Aℱ̃(ℱ̃1) < Aℱ̃(ℱ̃2)  iff  ℱ̃1 < ℱ̃2. 

Sℱ̃ 
∗(ℱ̃1 ) = Sℱ̃ 

∗(ℱ̃2 ) with Aℱ̃(ℱ̃1) = Aℱ̃(ℱ̃2)  iff  ℱ̃1 = ℱ̃2. 

 

Max Z = c∗x 

s.t. 

Am×n x ≤ b, 

x ≥ 0. 

(3) 

x1
k = [ak

∗ ] and x2
k = [ak

∗ ] + 1 = 〈ak
∗ 〉, for k = 1, 2, … , n. (6) 



 Sadia | Opt. 2(1) (2025) 52-62 

 

57

 

  
where [t] is the largest integer less than or equal to t and 〈t〉 is the smallest integer greater than or equal to t. 

With such bifurcations, we can find all the 2n integer points in the surrounding of the noninteger x∗ solution 

(e.g. in case of 2 variable problems if x∗ = (2.2, 3.6), then these will be 22 = 4 integer points viz. 

(2, 3), (2, 4), (3,3) and (3,4) around x∗.  Let us denote the set of indices of these 2n points by T also, the 

objective value at x∗ is z∗. Thus, the objective function level plane at  x∗ is given by 

Then we find the perpendicular distance di from the surrounding points, to the objective function level plane 

by using the formula given by Dantzig [16]. 

where xi
o is an integer point around x∗. 

But, here we are finding the difference by this formulae di = z∗ − cxi
0, i ∈ T, given by Adhami and Rabbani 

[46] where they have taken the difference between objective function values at surrounding integer. The next 

step is to search the integer point xi
o, which has a minimum distance from the objective hyperplane. The 

negative distance and the distances from the infeasible points should be omitted. We choose the minimum 

positive distance only from the feasible points. 

Let S be a set of indices i ∈ T for which xi
o are feasible. Let  xi

o = {xk
o │dk = min

i∈S
di}.Now, as we have to search 

for the feasible point xi
0 which has a minimum positive difference from the objective function value. So, 

consider the two variable problem as (x1
∗ , x2

∗ ), which is a non-integer and its surrounding integer points will 

be ( [x1
∗], [x2

∗ ] ), ( [x1
∗], 〈x2

∗〉), ( 〈x1
∗〉, [x2

∗] ) and (〈x1
∗〉, 〈x2

∗〉) and the notations have the same meaning described 

above. Now, consider the case 〈x1
∗〉 =  x1

k, 〈x2
∗ 〉 = x2

k. By using simple mathematics, we can say that di will 

always be negative for these values of xi 
∗ for which ( x1

k > x1
∗ and x2

k  > x2
∗). So, at this point, the distance will 

always be negative and we will always reject this point. Thus, for two-variable problems, we will have to search 

for 3 points. And this can be generalized for n − variable problems where we have to search for 2n − 1 points. 

Theorem 1. If each variable in the point of search is greater than its respective continuous optimal solution, 

then that point will always be neglected in NAZ- cut. 

Proof: Let us consider a two-variable problem. 

Where x = (x1 , x2 ), A = (a1, a2) and x∗ = (x1
∗, x2

∗  ) is the continuous optimal solution.  

Also, 〈x1
∗〉 =  x1

k, 〈x2
∗〉 = x2

k. Now, we have to show that (a1x1
∗ + a2x2

∗ ) − (a1x1
k + a2x2

k)= negative quantity. 

Similarly, 

Now, we get 

cx∗ = z∗. (5) 

di =
z∗ − cxi

o

√∑ cj
2 n

j=1

 , i ∈ T. 
(6) 

Min z = cx,

A x ≤ b,

x ≥ 0.

  

⇒ x1
k > x1

∗ ⇒ a1x1
k > a1x1

∗.  

⇒ x2
k > x2

∗ ⇒ a2x2
k > a2x2

∗ .  

(a1x1
k + a2x2

k) > (a1x1
∗ + a2x2

∗).  



 Integer programming problems with fermatean fuzzy parameters using NAZ-cut 

 

58

 

  Therefore, 

We can extend it for n − variable problem which will be as follows: (a1x1
∗ + a2x2

∗ + ⋯ anxn
∗ ) −

(a1x1
k + a2x2

k + ⋯ anxn
k) = negative quantity. Next, we proceed in the usual manner as we solve the NAZ cut. 

The procedure for solving the problem contains the following steps: 

Step 1. Solve the LPP using the simplex or dual simplex method. 

Step 2. If this solution is integer, stop. Otherwise, round off the non-integer solution to the nearest integers 

as described above in Eq. (3). Also, exclude the point whose value is greater than its respective continuous 

optimal solution (see Theorem 1). 

Step 3. Find the minimum perpendicular distance from the integer point, which is inside the feasible region 

on the objective curve passing through the non-integer solution. Derive NAZ cut passing through this point 

and parallel to the objective function curve.  

Step 4. Use the branch and bound or cutting plane method to find the integer optimum [47], [48]. 

3|Numerical Illustration 

In this section, we consider a numerical example of the proposed problem. 

We will solve this problem considering it non-integer by using the simplex method and we get the following 

solution x1 = 2.37, x2 = 1.58, and z = 9.48. So, when we round off the obtained non-integer to the points as 

(2,2), (3,2), (3,1), and (2,1). From these points, we see that (3,  2) is that point in which both (3 > 2.37, 2 > 

1.58). So we will reject this point here and will not consider it in further calculation. We are rejecting this 

point because we never consider negative distances and these types of points will always give negative 

distances. (see Theorem 1). Then, we calculate the perpendicular distance by this formula: 

Distance from the point (2, 2) is -0.52, Distance from the point (3, 1) is  0.48, Distance from the point (2, 1) 

is  2.48. We discard those points for which distances are negative and are outside the feasible region and check 

whether the constraints are satisfied for the points for which distance is positive.  So, we get (2,1) as the 

required point. Furthermore, we derive the NAZ cut passing through the integer point (2,1) shown in Figure 

1 below: 

(a1x1
∗ + a2x2

∗) − (a1x1
k + a2x2

k) = negative quantity  

Maximize Z = 2x1 + 3x2,        
subject to    5x1 + 2x2 ≤ 15,
                        3x1 + 5x2 ≤ 15,
          x1, x2 ≥ 0  and integer.

  

di = z∗ − cxi 
0.  



 Sadia | Opt. 2(1) (2025) 52-62 

 

59

 

  

 

Fig 1. Depict the solution of the numerical illustration 

problem using NAZ-cut. 

And then solving the new problem by using the branch and bound method (Daikin's Approach) as shown in 

Fig. 2: 

 

Fig 2.  Shows the compromise optimal solution of the proposed problem. 

The compromise optimal solution is represented as follows: x1 = 0, x2 = 3 and z = 9. 



 Integer programming problems with fermatean fuzzy parameters using NAZ-cut 

 

60

 

  
4|Conclusion 

In this study, we explored an enhanced approach to solving IPPs using the NAZ-cut method, particularly 

under the influence of Fermatean fuzzy parameters. The NAZ-cut technique, originally proposed by Bari and 

Ahmad, provides a simple yet powerful mechanism to reduce the feasible region of an IPP by introducing a 

constraint that systematically eliminates non-optimal regions. Our contribution lies in refining this method 

by identifying and excluding specific integer points that are guaranteed to yield negative distances from the 

objective function level plane, thereby reducing unnecessary computations. We established a supporting 

theorem to justify this exclusion, which simplifies the enumeration process without compromising the 

optimality of the solution. This theoretically grounded optimization not only enhances the computational 

efficiency of the NAZ-cut method but also makes it more scalable for higher-dimensional problems. Through 

a numerical example, we demonstrated how the proposed methodology can effectively identify the optimal 

integer solution while avoiding redundant calculations. 

Furthermore, by incorporating Fermatean fuzzy parameters into the IP model, this work extends the 

applicability of the NAZ-cut method to problems characterized by uncertainty and imprecision. This 

integration broadens the relevance of our approach to real-world scenarios where exact parameter values are 

often unknown or imprecise. Future research may explore extending this framework to more complex multi-

objective or dynamic environments, potentially integrating machine learning techniques to further enhance 

decision-making under fuzziness and constraint. In the present problem, we have discarded one point of 

enumeration out of 2n integer points as negative distances are not to be taken and this point will always give 

a negative distance, a theorem is also given in support of it. So, it will reduce the calculation as now the points 

for enumeration are 2n − 1 (n = number of variables) are points. 

Data Availability 

Required data is available in this manuscript. 

Conflict of Interest 

There are no competing interests to declare. 

Consent for Publication 

All authors have provided their consent for the publication of this manuscript  

References 

[1]  Antunes, C. H., Alves, M. J., & Clímaco, J. (2016). Multiobjective linear and integer programming. Cham, 

Switzerland: Springer. https://link.springer.com/book/10.1007/978-3-319-28746-1 

[2]  Wolsey, L. A. (2020). Integer programming. John Wiley & Sons. https://www.wiley.com/en-

us/Integer+Programming%2C+2nd+Edition-p-9781119606536 

[3]  Paneque, M. P., Bierlaire, M., Gendron, B., & Azadeh, S. S. (2021). Integrating advanced discrete choice models 

in mixed integer linear optimization. Transportation research part b: methodological, 146, 26–49. 

https://doi.org/10.1016/j.trb.2021.02.003 

[4]  Cornuéjols, G., Trick, M. A., & Saltzman, M. J. (1995). A tutorial on integer programming. 

https://cs.wmich.edu/gupta/teaching/cs6310/lectureNotes_cs6310/integer%20LP%20applications%20and%20so

lutions%20from%20Clemson%201995.pdf 

[5]  Papalexopoulos, T. P., Tjandraatmadja, C., Anderson, R., Vielma, J. P., & Belanger, D. (2022, June). Constrained 

discrete black-box optimization using mixed-integer programming. International Conference on Machine 

Learning (pp. 17295-17322). PMLR. https://proceedings.mlr.press/v162/papalexopoulos22a.html 

[6]  Pisaruk, N. (2019). Mixed integer programming: Models and methods. Minsk: bsu. 

https://www.researchgate.net 



 Sadia | Opt. 2(1) (2025) 52-62 

 

61

 

  
[7]  Naderi, B., Ruiz, R., & Roshanaei, V. (2023). Mixed-integer programming vs. constraint programming for shop 

scheduling problems: new results and outlook. INFORMS journal on computing, 35(4), 817–843. 

https://doi.org/10.1287/ijoc.2023.1287 

[8]  Carter, M., Price, C. C., & Rabadi, G. (2018). Operations research: a practical introduction. Chapman and 

Hall/CRC. https://www.taylorfrancis.com/books/mono/10.1201/9781315153223/operations-research-michael-

carter-camille-price-ghaith-rabadi 

[9]  Shoukat, R. (2024). Integrated supply chain plan under multiple distribution networks: an implementation of 

mixed integer linear programming. Circular economy and sustainability, 4(4), 2599–2623. 
https://doi.org/10.1007/s43615-024-00404-3 

[10]  Kardoš, J. (2020). High-performance interior point methods [Thesis] https://folia.unifr.ch/global/documents/319135 

[11]  Kemppainen, E. (2020). Imcomplete maxsat solving by linear programming relaxation and rounding. [Thesis]. 

https://helda.helsinki.fi/server/api/core/bitstreams/06c4b179-235b-4f52-832a-62094d508f61/content 

[12]  Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-bound algorithms: A survey 

of recent advances in searching, branching, and pruning. Discrete optimization, 19, 79–102. 

https://doi.org/10.1016/j.disopt.2016.01.005 

[13]  Basu, A., Conforti, M., Di Summa, M., & Jiang, H. (2023). Complexity of branch-and-bound and cutting planes 

in mixed-integer optimization. Mathematical programming, 198(1), 787–810. https://doi.org/10.1007/s10107-022-

01789-5 

[14]  Deza, A., & Khalil, E. B. (2023). Machine learning for cutting planes in integer programming: A survey. ArXiv 

preprint arxiv:2302.09166. https://arxiv.org/abs/2302.09166 

[15]  Jiao, H., Wang, W., & Shang, Y. (2023). Outer space branch-reduction-bound algorithm for solving generalized 

affine multiplicative problems. Journal of computational and applied mathematics, 419, 114784. 

https://doi.org/10.1016/j.cam.2022.114784 

[16]  Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-salesman problem. Journal of 

the operations research society of america, 2(4), 393–410. https://doi.org/10.1287/opre.2.4.393 

[17]  Markowitz, H. M., & Manne, A. S. (1957). On the solution of discrete programming problems. Econometrica: 

journal of the econometric society, 84–110. https://doi.org/10.2307/1907744 

[18]  Gomory, R. E. (2009). Outline of an algorithm for integer solutions to linear programs and an algorithm for the 

mixed integer problem. 50 years of integer programming 1958-2008: from the early years to the state-of-the-art (pp. 77–

103). Springer. https://doi.org/10.1007/978-3-540-68279-0_4 

[19]  Gomory, R. E. (1960). All-integer programming algorithm. International Business Machines Corporation. 

[20]  Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval research logistics 

quarterly, 9(3–4), 181–186. https://doi.org/10.1002/nav.3800090303 

[21]  Young, R. D. (1965). A primal (all-integer) integer programming algorithm. J. res. nat. bur. standards.—1965, b, 69, 

213–250. https://books.google.com/books 

[22]  BnnoBRs, J. (1962). Partitioning procedures for solving mixed-variables programming problems. Numer. math, 

4(1), 238–252. http://www.im-uff.mat.br/puc-rio/disciplinas/2006.1/soe/arquivos/benders-numerische-

mathematik-1962.pdf 

[23]  Harris, P. M. J. (1964). An algorithm for solving mixed integer linear programmes. Journal of the operational 

research society, 15(2), 117–132. https://doi.org/10.1057/jors.1964.24 

[24]  Trotter Jr, L. E., & Shetty, C. M. (1974). An algorithm for the bounded variable integer programming problem. 

Journal of the acm (jacm), 21(3), 505–513. https://doi.org/10.1145/321832.321848 

[25]  Granot, D., & Granot, F. (2011). On integer and mixed integer fractional. Studies in integer programming, 1, 221–

231. https://books.google.com/books 

[26]  Land, A. H., & Doig, A. G. (2009). An automatic method for solving discrete programming problems. In 50 

years of integer programming 1958-2008: from the early years to the state-of-the-art (pp. 105–132). Springer. 
https://doi.org/10.1007/978-3-540-68279-0_5 

[27]  Bertier, P., & Roy, B. (1965). Une procédure de résolution pour une classe de problèmes pouvant posséder un 

caractère combinatoire. Bulletin du centre international de calcul de rome. 

[28]  Balas, E. (1968). A note on the branch-and-bound principle. Operations research, 16(2), 442–445. 

https://pubsonline.informs.org/doi/pdf/10.1287/opre.16.2.442 

[29]  Mitten, L. G. (1970). Branch-and-bound methods: General formulation and properties. Operations research, 18(1), 

24–34. https://doi.org/10.1287/opre.18.1.24 



 Integer programming problems with fermatean fuzzy parameters using NAZ-cut 

 

62

 

  [30]  Guignard, M., & Spielberg, K. (1981). Logical reduction methods in zero-one programming—minimal preferred 

variables. Operations research, 29(1), 49–74. https://doi.org/10.1287/opre.29.1.49 

[31]  Lenstra Jr, H. W. (1983). Integer programming with a fixed number of variables. Mathematics of operations research, 

8(4), 538–548. https://doi.org/10.1287/moor.8.4.538 

[32]  Hoffman, K. L., & Padberg, M. (1991). Improving LP-representations of zero-one linear programs for branch-

and-cut. ORSA journal on computing, 3(2), 121–134. https://doi.org/10.1287/ijoc.3.2.121 

[33]  Savelsbergh, M. W. P. (1994). Preprocessing and probing techniques for mixed integer programming problems. 

ORSA journal on computing, 6(4), 445–454. https://doi.org/10.1287/ijoc.6.4.445 

[34]  Balas, E., Ceria, S., Cornuéjols, G., & Natraj, N. (1996). Gomory cuts revisited. Operations research letters, 19(1), 1–

9. https://doi.org/10.1016/0167-6377(96)00007-7 

[35]  Weismantel, R. (1997). On the 0/1 knapsack polytope. Mathematical programming, 77(3), 49–68. 
https://doi.org/10.1007/BF02614517 

[36]  Kesavan, P., Allgor, R. J., Gatzke, E. P., & Barton, P. I. (2004). Outer approximation algorithms for separable 

nonconvex mixed-integer nonlinear programs. Mathematical programming, 100(3), 517–535. 
https://doi.org/10.1007/s10107-004-0503-1 

[37]  Frangioni, A., & Gentile, C. (2006). Perspective cuts for a class of convex 0--1 mixed integer programs. 

Mathematical programming, 106(2), 225–236. https://doi.org/10.1007/s10107-005-0594-3 

[38]  Vyve, M. Van, & Wolsey, L. A. (2006). Approximate extended formulations. Mathematical programming, 105(2), 

501–522. https://doi.org/10.1007/s10107-005-0663-7 

[39]  Lay, E. H., Jacobson, A. R., Holzworth, R. H., Rodger, C. J., & Dowden, R. L. (2007). Local time variation in 

land/ocean lightning flash density as measured by the World Wide Lightning Location Network. Journal of 

geophysical research: atmospheres, 112(D13). https://doi.org/10.1029/2006JD007944 

[40]  Cadoux, T. J. (2008). The Roman carcer and its adjuncts. Greece & rome, 55(2), 202–221. 

https://doi.org/10.1017/S0017383508000533 

[41]  Basu, A., Conforti, M., & Di Summa, M. (2015). A geometric approach to cut-generating functions. 

Mathematical programming, 151(1), 153–189. https://doi.org/10.1007/s10107-015-0890-5 

[42]  Jansen, K., & Rohwedder, L. (2023). On integer programming, discrepancy, and convolution. Mathematics of 

operations research, 48(3), 1481–1495. https://doi.org/10.1287/moor.2022.1308 

[43]  Hooker, J. N. (2024). Integer programming duality. Encyclopedia of optimization (pp. 1–13). Springer. 
https://doi.org/10.1007/978-0-387-74759-0_289 

[44]  Goswami, K., Schmelcher, P., & Mukherjee, R. (2024). Integer programming using a single atom. Quantum science 

and technology, 9(4), 45016. https://iopscience.iop.org/article/10.1088/2058-9565/ad6735/pdf 

[45]  Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of ambient intelligence and humanized computing, 

11(2), 663–674. https://doi.org/10.1007/s12652-019-01377-0 

[46]  Adhami, A. Y., & Rabbani, Q. (n.d.). A procedure for solving integer bilevel linear programming problems. 

International journal of innovative research in science, engineering and technology, 3(1), 8233- 8237. 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5ceb62d93dc3eb8a34fcdf78408caec3c667c9

51 

[47]  Haseen, S., Sadia, S., Bari, A., & Ali, Q. M. (2014). Integer Programming: NAZ cut and AT cut. International 

journal of engineering science and technology, 6(4), 128-137. https://www.researchgate.net/profile/Sanam-

Haseen/publication/281368220_Integer_Programming_NAZ_cut_and_A-

T_cut/links/55e3f8b008aecb1a7cc9e059/Integer-Programming-NAZ-cut-and-A-T-cut.pdf 

[48]  Theodorakatos, N. P., Babu, R., & Moschoudis, A. P. (2023). The branch-and-bound algorithm in optimizing 

mathematical programming models to achieve power grid observability. Axioms, 12(11), 1040. 

https://doi.org/10.3390/axioms12111040 

 


