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1|Introduction    

The Numerous study areas, including statistical sciences, have extensively used IG [1]. In other words, the 

goal of IG is to use statistics to apply the methods of Differential Geometry (DG), which indicates the major 

goal of IG is to use stochastic processes and probability theoretic  in the applications of methodologies of 

non-Euclidean geometry.  

IG supports SMs’ descriptions that are based on intuitive reasoning. One might have a greater understanding 

of the crucial significance of IG [2]–[4].  
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Parametrization of a Statistical Manifold (SM) is visualized by Fig. 1 [4]. 

 

Fig. 1. SM’s parametrization [3]. 

According to the literature, a paper by [5] examined  info-geometrically the stable M/D/1 queue based on 

queue length routes ‘characteristics, was the real motivator for the current study. 

The main deliverables of this paper are described below. 

I. The discovery of the FIM  and its inverse for the transient M/M/ 1 queue. 

II. Revealing the new discovery of the Geodesic Equations (GEs)  of motion of the  coordinates  of the transient 

M/M/ 1 queue. 

III. A novel 𝛼-connection [6] is introduced, which maps each coordinate to a value.  

IV. Highlighting potential IG applications to ML. 

The remainder of the paper is divided into the following sections: preliminary IG definitions  are given in 

Section 2. The transient M/M/1 QM’s FIM and it IFIM are introduced in Section 3. While Section 4 gives 

the Information Geometric Equations of Motion (IMEs) for the coordinates of the transient M/M/1 QM. 

Section V addresses IG applications to ML. Section VI wraps up the paper and provides some challenging 

open problems combined with further research.  

1.1|Statistical Manifold 

M = {p(x, θ)|θϵΘ} is called an SM [6] if x is a random variable in sample space X and p(x, θ) is the probability 

density function, which satisfies certain regular conditions.  

2|Potential Function 

The potential function Ψ(θ) [6] is the distinguished negative function of the coordinates alone of ℒ(x; θ) =

l n(p(x; θ)).  

3|Fisher’s Information Matrix 

Fisher’s Information Matrix (FIM), namely [gij] reads as: 

With respect to natural coordinates. 

4|Inverse Fisher Information Matrix (IFIM), Namely [𝐠𝐢𝐣] 

[gij] [6] reads: 

[gij] = [
∂2

∂θi ∂θj
(Ψ(θ))] , i, j = 1,2, . . , n.                                 (1) 

[gij] = ([g ij]) )
−1 = 

adj[gij]

∆
, ∆= det[gij].                                  (2) 
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5|𝛂-Connection 

For each real number 𝛼, the α- connection [7] reads: 

With Ψ(θ) Definition (2), ∂i = 
∂

∂θi
. 

6|Geodesic Equations of Motion  

The IEMs read as [6] 

By the above definition, the GEs are interpreted physically as the Information Geometric Equations of 

Motion , Shortly (IGEMs), or the Relativistic Equations of Motion (REMs) , or the Riemannian equations of 

motion. At this stage, the current study provides a  ground- breaking discovery of the IG analysis of transient 

queueuing systems in comparison to that of non-time dependent queueing systems, namely IG analysis of 

stable queues [8], [9]. 

6.1|Fim And Ifim of  the Transient M/M/1 Qm     

The most straightforward probabilistic queueing model that can be studied analytically is a single-channel 

model with exponential inter-arrival durations, service times, and FIFO queue discipline. This is called the 

M/M/1 queue in queueing theory [10]. 

Based on the introduction of the function, Parthasarathy [10] suggested a straightforward method for the 

transient solution of the M/M/1 system to read as 

where 𝜆 stands for the mean rate per unit time at which arrival instants occur, 𝜇 is the mean rate of service 

time, ρ =  
λ(t)

μ(t)
 defines the traffic intensity or utilization factor. 

With β1 =  2√λμ , β2 =  2√
λ

μ
  , In(x) Eq. (19) is the modified Bessel function and 

Theorem 1. The underlying queue of Eq. (5) has: 

I. FIM reads as  

Γij,k
(α)
 = (

1−α

2
)(∂i ∂j ∂k(Ψ(θ)). (3) 

d2θk

dt2
+ Γij

k(0) (
dθi

dt
) (
dθj

dt
) = 0,i, j = 1,2,… , n, Γij

k(α) = Γij,s
(α)gsk.  (4) 

pn(t) = ρp0(t)e
−(λ+μ)t[∑ rm

n
m=1 (t) + e(λ+μ)t], n = 0,1,2,…, (5) 

rn(t) = ( μβ2
n−a1(1 − δ0a1)[In−a1(β1t) − In+a1(β1t)] + λβ2

n−1−a1 (In+1−a1(β1t) −

In−1−a1(β1t))).  
(6) 

p0(t) =  ∫ r1

t

0

e−(λ+μ)ydy + δ0a1 .  

[gij] = [
a b c
b 0 h
c h l

]. (7) 



 A Mageed | Opt. 1(2) (2024) 276-286 

 

279

 

  
With 

Provided that, . refers to the temporal derivative  
d

dt
. 

II.  [gij] reads as: 

where  

 

III. Following (5), we have 

We have 

Thus, 

 

a =  
1

ρ2
−

1

(1−ρ)2
, (8) 

b = t, (9) 

c =   
ρ.

ρ2
+

ρ.

(1−ρ)2
 + tμ. + μρ.,     (10) 

h = (1 + ρ) + tρ., (11) 

l = ( 
ρ.2 − ρρ..

ρ2
+
ρ.2 + (1 − ρ)ρ..

(1 − ρ)2
+ ((1 + ρ)tμ.. + μ + 2ρ.μ. +  2μρ. + 2ρμ. + μtρ.., (12) 

Δ = det([gij]) = (a(−h
2) − b(bl − ch) + c(bh)). (13) 

[gij] = 
adj[gij]

∆
= [
A B L
B E F
L F H

], (14) 

A = 
(−h2)

∆
, (15) 

B = 
(ch − bl)

∆
, (16) 

L =  
(bh)

∆
, (17) 

E =  
(al − c2)

∆
, (18) 

F =  
(bc − ah)

∆
, (19) 

H =  
(−b2)

∆
. (20) 

ℒ(x; θ) = l n(pn(x; θ))  =   (l n(ρp0(t)e
−(λ+μ)t) + l n(ρp0(t)e

−(λ+μ)t[∑ rm
n
m=1 (t) +

e(λ+μ)t] ),            
(21) 

θ =  (θ1, θ2, θ3) = (ρ, μ, t).    (22) 

Ψ(θ) = −l n(ρ) − l n(1 − ρ) + μ(1 + ρ)t,  p0(t) = 1 − ρ.      (23) 

∂1 = 
∂Ψ

∂ρ
= −

1

ρ
+

1

(1−ρ)
+ μt, ∂2 = 

∂Ψ

∂μ
= (1 + ρ)t , ∂3 = 

∂Ψ

∂t
= −

ρ.

ρ
+

ρ.

(1−ρ)
+ (1 +

ρ)tμ. + μ(1 + ρ) + μtρ.,   
(24) 

∂1 ∂1 =
1

ρ2
−

1

(1 − ρ)2
 , (25) 

∂1 ∂2 = ∂2 ∂1 =  t, (26) 



 Parthasarathian transient solution of m/m/1 queue manifold: info-geometric analysis and … 

 

280

 

  

Therefore, the fisher information matrix, FIM, is obtained (Eq. (7)). 

[gij]  reads as: 

Thus, 

As requested, It is notable that FIM should satisfy the symmetry requirement.  

In what follows, the components of  α (or ∇(α))- connection are obtained. These calculated expressions are 

needed to obtain the corresponding GEs of the parametric coordinates of M/M/1 QM. 

From Eq. (3), the reader can check that. 

𝜕2𝜕2 =  0, (27) 

∂1 ∂3 = 
ρ.

ρ2
+

ρ.

(1−ρ)2
 + tμ. + μρ. = ∂3 ∂1, (28) 

∂2 ∂3 = (1 + ρ) + tρ
. = ∂3 ∂2, (29) 

∂3 ∂3 = (
ρ.2 − ρρ..

ρ2
+
ρ.2 + (1 − ρ)ρ..

(1 − ρ)2
+ (1 + ρ)tμ.. + μ + 2ρ.μ. +  2μρ. + 2ρμ. μtρ..). (30) 

[gij] = [gij]
−1 =

adj[gij]

∆
= 

Transpose(Cov[gij])

∆
 = 

1

∆
transpose(Cov [

a b c
b 0 h
c h l

])  

= [

(−h2) (ch − bl) (bh)

(ch − bl) (al − c2) (bc − ah)

(bh) (bc − ah) (−b2)

]. 

(31) 

[gij] = 
1

∆
transpose(Cov [

(−h2) (ch − bl) (bh)

(ch − bl) (al − c2) (bc − ah)

(bh) (bc − ah) (−b2)

]) = [
A B L
B E F
L F H

].   

 Γ11,1
(α)

 = −(1 − α)(
1

(1−ρ)3
+

1

ρ3
), (32) 

0 =  Γ22,2
(α) = Γ12,2

(α) = Γ22,1
(α) = Γ21,2

(α) = Γ11,2
(α) = Γ12,1

(α) = Γ21,1
(α) = Γ22,3

(α) = Γ23,2
(α)

 = Γ32,2
(α) , (33) 

Γ31,1
(α)

 = (1 − α)ρ.(
1

(1−ρ)3
−

1

ρ3
),       (34) 

Γ13,1
(α)

= Γ11,3
(α)

= ( 1 − α)ρ. (
1

(1 − ρ)3
−
1

ρ3
), (35) 

Γ13,2
(α)

= Γ12,3
(α)

= 
(1 − α)

2
, (36) 

Γ13,3
(α) = 

(1 − α)

2
[
ρ..

ρ2
+

ρ..

(1 − ρ)2
+

2ρ.2

(1 − ρ)3
+ tμ.. + 2μ.], (37) 

Γ23,1
(α) = Γ21,3

(α) = 
(1 − α)ρ.

2
, (38) 

Γ23,3
(α) =

(1 − α)(1 +  2ρ. + tρ..)

2
, (39) 

Γ31,2
(α) = Γ32,1

(α) = 
(1 − α)

2
. (40) 
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Engaging the same procedure, the remaining components can be determined. 

6.2|The IGMES of the Underlying Queue Manifold 

I. The IMEs of the server utilization coordinate, ρ of the transient M/M/1QM. 

The IMEs corresponding to the arrival rate coordinate, ρ are  

Now, we are in a situation of trying to find the path of motion of family of families of IMEs corresponding 

to the server utilization coordinate, ρ. 

It can be verified that one of the closed form solutions of Eq. (41) is determined by the paths of motion:  

II. The IMEs of the Mean service Rate coordinate, μ of the transient M/M/1 QM. 

The IMEs of 𝜇 are 

Now, we are in a situation of trying to find the path of motion of family of families of IMEs corresponding 

to the mean service rate, 𝜇. 

Thus, 

d2θ1

dt2
+ Γij

1(0)
(
dθi

dt
) (
dθj

dt
) = 0,i, j = 1,2,3.  

[
d2ρ

dt2
+ [

L

2
+
Lρ.

2
](
dρ

dt
)(
dμ

dt
) +[

1

2
(

2Aρ. (
1

(1−ρ)3
−

1

ρ3
) +

 B + L [
ρ..

ρ2
+

ρ..

(1−ρ)2
+

2ρ.2

(1−ρ)3
+ tμ.. + 2μ.]

) + 

 
1

2
(2Aρ.(

1

(1−ρ)3
−

1

ρ3
)  +   B + (

ρρ..−2ρ.2

ρ3
+
2ρ.2+(1−ρ)ρ..

(1−ρ)3
+ 

tμ.. + ρ.μ. + μ. + μρ..) L))](
dρ

dt
)(
dt

dt
)+[ρ.L(

1

(1−ρ)3
−

1

ρ3
)](

dρ

dt
)2+ 

 [
1

2
(Aρ.  + B(1 +  2ρ. + tρ..)) +

1

2
(A +(ρ. + tρ..)L)](

dμ

dt
)(
dt

dt
)+ 

[ 
1

2
(( 

ρρ..−2ρ.2

ρ3
+
2ρ.2+(1−ρ)ρ..

(1−ρ)3
+ tμ.. + ρ.μ. + μ. + μρ..)A + (ρ. +

tρ..)B +[
(ρ.ρ..−ρρ…)ρ−2ρ.(ρ.2−ρρ..)

ρ3
+
(ρ.ρ..+(1−ρ)ρ…)(1−ρ)+2ρ.(ρ.2+(1−ρ)ρ..)

(1−ρ)3
+ 

(1 + ρ)tμ... + (1 + ρ)μ.. + 3ρ.μ.. + μ. + 2ρ..μ. +  2μρ..+ 

4μ.ρ. + 2ρμ.. + μtρ... + μρ.. + μ.tρ..]L)] (
dt

dt
)
2
] = 0.  

(41) 

ρ(t) = constant, μ(t) =   constant , such that ρ ∈ (0,1), μ > 1. (42) 

d2θ2

dt2
+ Γij

1(0) (
dθi

dt
) (
dθj

dt
) = 0,i, j = 1,2,3.  

[
d2μ

dt2
+ [

F

2
+
Fρ.

2
](
dρ

dt
)(
dμ

dt
) +[

1

2
(2Bρ. (

1

(1−ρ)3
−

1

ρ3
) +  E + F [

ρ..

ρ2
+

ρ..

(1−ρ)2
+

2ρ.2

(1−ρ)3
+ tμ.. +

2μ.]) +
1

2
(2Bρ.(

1

(1−ρ)3
−

1

ρ3
) + E + (

ρρ..−2ρ.2

ρ3
+
2ρ.2+(1−ρ)ρ..

(1−ρ)3
+ tμ.. + ρ.μ. + μ. + μρ..) 

F)](
dμ

dt
) (

dt

dt
)+[ρ. (

1

(1−ρ)3
−

1

ρ3
) F] (

dρ

dt
)
2
+ [

1

2
(Bρ.  + E(1 +  2ρ. + tρ..)) +

1

2
(B +(ρ. +

tρ..)F)](
dρ

dt
)(
dt

dt
)+[ 

1

2
(( 

ρρ..−2ρ.2

ρ3
+
2ρ.2+(1−ρ)ρ..

(1−ρ)3
+ tμ.. + ρ.μ. + μ. + μρ..)B + (ρ. +

tρ..)E + [
(ρ.ρ..−ρρ…)ρ−2ρ.(ρ.2−ρρ..)

ρ3
+
(ρ.ρ..+(1−ρ)ρ…)(1−ρ)+2ρ.(ρ.2+(1−ρ)ρ..)

(1−ρ)3
+ 
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It is obvious that for arbitrary constant values of ρ, μ, we have a closed form solution for Eq. (43). As time  

becomes sufficiently large, i.e.,  t → ∞, Eq. (42) reduces to 

We propose the closed form solution, μ =
2γt

(1+γt)
,  for some arbitrary non-zero constant 𝛾. substituting in Eq. 

(44) implies: 

As t → ∞, γ = 0,0,0, −3. The only accepted value is γ = −3, μ =
6t

(3t−1)
,  which tends to the value μ = 2 as 

t → ∞. 

III. The IMEs of the temporal coordinate, t for the underlying QM. 

Engaging a similar lengthy mathematical manipulation, it can be verified that the IMEs of the temporal 

coordinate, t, at infinite time is characterized by the family of families of temporal curves: 

for some arbitrary non-zero constants ζ1,ζ2, ζ3,  𝜁1 > 1.                                                                                                              

IV. Ig Applications To Ml 

Stochastic gradient descent is a popular optimisation approach in ML that seeks to determine which direction 

of descent is the steepest within probability distributions’ parameter space. Amari et al. [11] created the natural 

gradient, which is superior to the ordinary gradient since it more accurately captures this direction. 

Furthermore, even with gradient descent, FIM can be used to calculate the predicted change in output about 

parameter changes. Artificial Neural Networks (ANNs) are functions with multiple parameters that map input 

vectors to output vectors. They are widely applied in regression, computer vision, and speech processing. 

ANNs can be trained through supervised learning, where a training set of input-output pairs is used, or 

through unsupervised learning, which does not require a training set. The back-propagation algorithm 

efficiently computes the gradient descent by determining the contribution of each parameter to the error. 

Overfitting, a common issue in ANNs, can be mitigated by techniques such as using a validation set, early 

stopping, data augmentation, and dropout [12]. 

[
d2μ

dt2
+[
1

2

(

 
 
 

 
((
1

ρ2
−

1

(1−ρ)2
)[ ((1+ρ)tμ..+μ+2ρμ.]−(tμ.)2)

((
1

ρ2
−

1

(1−ρ)2
)(−((1+ρ))

2
)−(t2[((1+ρ)tμ..+μ+2ρμ.]))

+

(t(tμ.)−(
1

ρ2
−

1

(1−ρ)2
)(1+ρ))

((
1

ρ2
−

1

(1−ρ)2
)(−((1+ρ))2)−(t2[((1+ρ)tμ..+μ+2ρμ.]))

[tμ.. + 2μ.]

)

 
 
 

 +  

 
(t(tμ.)−(

1

ρ2
−

1

(1−ρ)2
)(1+ρ))

((
1

ρ2
−

1

(1−ρ)2
)(−((1+ρ))

2
)−(t2[((1+ρ)tμ..+μ+2ρμ.]))

+ 

 (tμ.. + μ.)
(t(tμ.)−(

1

ρ2
−

1

(1−ρ)2
)(1+ρ))

((
1

ρ2
−

1

(1−ρ)2
)(−((1+ρ))

2
)−(t2[((1+ρ)tμ..+μ+2ρμ.]))

)](
dμ

dt
)+[ 

1

2
(( tμ.. +

 μ.)
(tμ.(1−ρ)−t[((1+ρ)tμ..+μ])

((
1

ρ2
−

1

(1−ρ)2
)(−((1+ρ))

2
)−(t2[((1+ρ)tμ..+μ+2ρμ.]))

+] ] = 0.   

(43) 

[
3μ..

2
−

3μ.2

2(1+ρ)
  −

μ.μ...

μ..
] = 0.   (44) 

18γ3 +
6γ2

(1 + γt)(1 + ρ)
+ 6γ4 = 0. (45) 

μ(t) =  ζ1+ζ2t + ζ3t
2.   (46) 
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In Reinforcement Learning (RL) [13], when an agent needs to prepare for unknown tasks, one approach is 

unsupervised skill discovery. These algorithms learn a set of policies without using a reward function and are 

like representation learning algorithms in supervised learning. While prior work has shown that these methods 

can accelerate downstream tasks, our analysis reveals that they do not learn skills that are optimal for every 

possible reward function. However, the distribution over skills can provide an optimal initialization that 

minimizes regret against adversarially chosen reward functions, assuming a specific adaptation procedure. 

Notably, understanding which state marginals are achievable is crucial for analyzing the behavior of 

unsupervised skill learning algorithms [13] and their relevance to state-dependent reward functions. The set 

of achievable state marginal distributions can be characterized by a set of linear equations or by a 

complementary description based on a specific property.  

This alternative perspective provides insights into the relationship between learned skills and downstream 

tasks in RL. So,  if we have a set of possible state distributions, any combination of those distributions within 

the convex hull is also possible. This means that there exists a policy that can achieve any state distribution 

within that convex hull. By taking the convex hull of the state distributions of all deterministic policies, we 

can obtain the set of all possible state distributions, which is referred to as a polytope. Each vertex of the 

polytope represents a deterministic policy, and any policy's state distribution can be expressed as a 

combination of the state distributions at the vertices, as visualized by Fig. 2. 

Fig. 2. Representation of reward functions as vectors from the origin. 

The objective of maximizing the expected return is equivalent to maximizing the dot product between the 

state marginal distribution and the reward vector. This visualization helps us understand how different 

reward-maximizing policies are related to the state marginal polytope and provides insights into the 

relationship between state-dependent reward functions and optimal policies [13]. 

The analysis of where the skills learned by Mutual Information-based Skill Learning (MISL) are positioned 

on the state marginal polytope, which has motivated [13] to undertake this analysis by examining the mutual 

information objective and dissecting it to understand how the learned skills align with the polytope. In the 

context of skill learning [13], maximizing mutual information is equivalent to minimizing the maximum 

difference between a prior distribution over states (represented by a green square) and any possible state 

distribution.  

This concept, known as information geometry, helps optimize skill-learning algorithms by assigning higher 

probabilities to policies with state distributions that deviate further from the average state distribution. The 

goal is to find skills as distinct as possible from each other and the average state distribution. Most importantly, 

the opaque circles represent the skills discovered by the Mutual Information Skill Learning (MISL) algorithm.  

The dashed line represents equidistant state marginals from the green square, indicating an equal divergence 

from the prior distribution over states. This visualization helps illustrate the relationship between the skills 

learned by MISL and their distribution in relation to the average state distribution. This is illustrated in Fig. 3. 
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Fig. 3. Skill Learning’s IG [13]. 

Reliable detection of Out-Of-Distribution (OOD) samples [14] is crucial for ensuring the safety of modern 

machine learning systems. The work of [14] introduced IGEOOD, an effective method that can detect OOD 

samples using any pre-trained neural network, regardless of the level of access to the ML model. By leveraging 

the geodesic distance between data distributions, IGEOOD combines confidence scores from the neural 

network's logits outputs and learned features to achieve superior performance compared to other state-of-

the-art methods across different network architectures and datasets [14]. 

The authors [14] introduced the concept of IG and derived a metric based on the Fisher-Rao distance to 

measure the mismatch between probability density functions of a pre-trained neural classifier. Experimental 

results demonstrate that IGEOOD performs competitively with state-of-the-art methods in different setups, 

including black-box and grey-box scenarios, and achieves improved performance on various benchmarks. Fig. 

4 showcases a  comparison between Fisher-Rao and Mahalanobis distances for distinguishing between 1D 

Gaussian distributions in the context of OOD detection. It highlights the motivation to use the Fisher-Rao 

metric, which measures the dissimilarity between probability models, as it shows better performance in 

distinguishing between in-distribution and OOD samples compared to other distance-based approaches. 

Fig. 4. Portraying the reason behind using Fisher-Rao OOD detection [14]. 

In the context of the experiment, the authors [14] compared three different settings for OOD detection. They 

use a unified metric, but with different formulations based on the type of distribution. For the Deep Neural 

Network (DNN) outputs, they use the softmax posterior probability distribution, while for the intermediate 

layers, they employ a model based on diagonal Gaussian Probability Density Functions (PDFs). This unified 

framework combines a single distance measure for both the softmax outputs and the latent features of the 

neural network, contributing to the separation of in-distribution and OOD samples, as illustrated in Fig. 5. 
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The distributions are shown for three different settings, specifically for a pre-trained DenseNet model on 

CIFAR-10 dataset, considering both in-distribution and OOD data from TinyImageNet (downsampled). This 

analysis helps evaluate the effectiveness of the IGEOOD score in distinguishing between in-distribution and 

OOD samples [13]. 

Fig. 5. The probability distributions of the IGEOOD score, which is a metric used for OOD detection.  

7|Conclusion 

This study offers a revolutionary info-geometrics of transient M/M/1 QM. For this queue, FIM and IFIM 

are established. The GEs of motion for the queue's coordinates are determined. More potentially,  some IG 

applications to ML are provided. Here are some challenging open problems to be addressed. 

Open problem one: following  the analysis in [13], a simplified model of skill learning algorithms that treated 

policy parameters and latent codes as a single representation, with different skills having distinct parameter 

sets was employed. However, practical implementations of skill learning algorithms are less flexible, which 

can alter the shape of the state marginal polytope.  

This limited flexibility may lead to incomplete representation of certain state distributions, resulting in gaps 

or divisions in the polytope. It is yet to be determined if these practical implementations learn fewer unique 

skills and how these limitations impact the average state distribution, which is a really challenging open 

problem. 

Open problem two: following the derivation of the potential function, PF.  

Is the process of finding the threshold of PF based on its parameters decidable? The problem is still open.  

Open problem three: having discovered PF (Eq. (21)), is it feasible to examine its algebraic properties as well 

as doing the same for its inverse, if it exists? This is a challenging open problem, yet unsolved so far. 

Open problem  four: the discovery of Revolutionary relativistic connections with the investigated transient 

queue is still unsolvable problem, for example finding the corresponding Gaussian,Ricci, Scalar and 

Einesteinian tensors for the transient M/M/1 QM. 

The frontiers are open for unlimited explorations. The next phase of research includes answering the above 

open research problems and exploring more new avenues of IG applications to other scientific disciplines. 

More importantly,  the possibility of employing Riemannian Geometric (RG) analysis, and the Theory of 

Relativity (TR) to  the analysis of the dynamics of transient queues. 
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