
        Corresponding Author: aslihan.sezgin@amasya.edu.tr@aihe.ac.ir  

        10.22105/opt.v1i2.55 

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 

Since its introduction by Molodtsov in 1999, soft set theory has gained widespread recognition as a method for 

modeling uncertainty and handling problems involving uncertainty. It has been used in several theoretical and 

practical situations. Since the theory's inception, scholars have been intrigued by its central idea-soft set operations. 

Several extended and restricted operations were defined, and their properties were studied. We provide new restricted 

and extended soft set operations that we call restricted lambda and extended lambda operations and examine their 

basic algebraic properties in depth. The distributions of this operation over other soft-set operations are also 

investigated. We demonstrate that the extended lambda operation, when combined with other kinds of soft sets, 

forms several significant algebraic structures, such as semirings and nearsemirings in the collection of soft sets over 

the universe, by taking into account the algebraic properties of the operation and its distribution rules. This theoretical 

research is very important both theoretically and practically, as the primary idea of the theory is the operations of soft 

sets, as they serve as the foundation for numerous applications, including cryptology, as well as the decision-making 

processes. 

Keywords: Soft sets, Soft set operations, Restricted lambda operation, Extended lambda operation. 

1|Introduction    

In the real world, there is a lot of uncertainty. To handle these ambiguities, traditional mathematical reasoning 

is inadequate. More scientific investigation beyond the reach of currently accessible methods has been 
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  necessary to dispel these uncertainties. In this respect, when Pascal and Fermat analyzed the uncertainty 

problem analytically in the early 17th century, they presented the probability theory. In the early 19th century, 

a large number of scientists investigated uncertainty.  

Heisenberg first explained uncertainty in 1920 and opened the door to many values. Early in the 1930s, 

Lukaisewicz developed the first three-valued logic system. Some theories that may be used to describe 

uncertainty include probability theory, interval mathematics, and fuzzy set theory; however, each has 

drawbacks. Consequently, Molodtsov [1] presented the theory of Soft Set in 1999, independent of creating 

the membership function. Unlike fuzzy set theory, which aims to eliminate uncertainty, soft set theory 

employs a set-valued function instead of a real-valued one. This idea has been successfully applied to several 

mathematical fields since its introduction. The domains are measurement theory, game theory, probability 

theory, Riemann integration, and Perron integration analysis. 

Maji et al. [2] and Pei and Miao [3] conducted the first study on soft-set operations. Ali et al. [4] presented 

many soft set operations, including restricted and extended soft set operations. In their work on soft sets, 

Sezgin and Yavuz [5] studied on soft binary piecewise symmetric difference operation of soft sets.  A thorough 

examination of the algebraic structures of soft sets was carried out by Ali et al. [6]. A number of academics 

were interested in soft set operations and studied the subject matter in depth in [7–16]. 

Several novel forms of soft-set operations have been introduced in the last five years. Eren and Çalışıcı [17] 

examined the idea and characteristics of the soft binary piecewise difference operation in soft sets. Sezgin and  

Çağman [18] developed the complementary soft binary piecewise difference operations of soft sets, and 

Stojanovic [19] defined and investigated its characteristics. Furthermore, a comprehensive the complementary 

soft binary piecewise theta operation was conducted by Sezgin and Sarıalioğlu [20].  

Sezgin et al. [21] worked on many new binary set operations and outlined several more, motivated by the 

work of Çağman [22], who added two new complement operations to the literature. Aybek [23] proposed 

several novel restricted and extended soft set operations using the method. Complementary extended soft set 

operations were the focus of Akbulut [24], Demirci [25], and Sarıalioğlu [26] in their attempts to modify the 

structure of extended operations in soft sets.  

Classifying algebraic structures and finding, displaying, and deriving results from their common properties 

are the goals of abstract algebra. This is why abstract algebra is given to this area of mathematics. 

Mathematicians have studied algebraic structures for millennia as they offer a universal and abstract approach 

to understanding and comprehending mathematical subjects. Fundamentally, algebraic structures are involved 

in many branches of mathematics. There are several significant uses for algebraic structures like rings, groups, 

and fields in mathematics, as well as other domains like physics and computer science. A foundation for 

comprehending more complex mathematical concepts and structures is laid by the structures of algebraic 

geometry (the study of multivariable polynomial solutions), algebraic topology, modular arithmetic, physics, 

number theory, and computer graphics, among other highly relevant fields. 

Furthermore, a framework for analyzing and comprehending a variety of mathematical objects and their 

relationships is provided by mathematical structures. Particular groups have applications in physics, chemistry, 

and cryptography and are used to analyze symmetries, rotations, and transformations in mathematical 

contexts. Studying the symmetries of intriguing geometric objects and forms requires using fundamental 

groups and their representations as group transformations, which are fundamental algebraic structures. 

Number theory, coding theory, and abstract algebra all use rings. Fundamental to geometry and other 

branches of mathematics is field algebra. Engineering, quantum physics, and linear algebra all use vector 

spaces. Algebras are used in computer science, physics, and mathematical reasoning. Both representation 

theory and abstract algebra make use of modules. 

Moreover, abstract algebra, which examines many algebraic systems' shared structures and common features, 

depends heavily on studying algebraic structures. With a knowledge of these structures' features, 

mathematicians can solve intricate problems, create new theories, and apply ideas to a variety of mathematical, 
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  scientific, and technical domains. Furthermore, applications frequently provide special examples of algebraic 

structures, which help to clarify specific circumstances and make it easier to examine more general scenarios.  

Classifying algebraic structures according to the properties of the operation given on a set is one of the most 

important algebraic mathematics problems. We might suggest new soft set operations, examine their 

properties, and think about the algebraic structures they form in the collection of soft sets to further our grasp 

of this subject. Thus far, four extended soft set operations (extended intersection, union, difference, and 

symmetric difference for soft sets) and four restricted soft set operations (restricted intersection, union, 

difference, and symmetric difference) have been developed. With the aim of making a major contribution to 

the field of soft set theory, we refer to the new restricted and extended soft set operations as restricted lambda 

operation and extended lambda operations of soft sets, which we propose in this study, and closely examine 

the algebraic structures associated with them as well as other soft set operations in the collection of soft sets. 

This study is organized as follows. the basic ideas behind soft sets and other algebraic structures are reviewed 

in Section 2. And in Section 3, the new soft set operations are defined. A thorough analysis is conducted on 

the algebraic characteristics of the first restricted lambda soft set operation and the second extended lambda 

soft set operation. We also study the distribution rules of these operations over other types of soft-set 

operations. Considering the distribution laws and the algebraic properties of the soft set operations, a detailed 

analysis of the algebraic structures formed in the set of soft sets with these operations is provided.  

We demonstrate that i the universe's collection of soft sets, a number of significant algebraic structures, 

including semiring and seminearring, are formed. A comprehensive analysis improves our knowledge of the 

applications and implications of soft set theory in many different fields. In the conclusion section, we discuss 

the significance of the study's findings and potential applications.  

2|Preliminaries 

This section covers a number of algebraic structures as well as a number of basic concepts in soft set theory. 

Definition 1 ([27]). Let U be the universal set, E be the parameter set, P(U) be the power set of U, and T⊆E. 

A pair (F, T) is called a soft set on U. Here, F is a function given by F: T → P(U). 

Throughout this paper, the collection of all the soft sets over U is designated by SE(U) and ST(U) denotes the 

collection of all soft sets over U with a fixed parameter set T, where T is a subset of E. 

Definition 2 ([6]). Let (F,T) be a soft set over U. If F(x)=∅ for all x∈T, then the soft set (F,T) is called a null 

soft set with respect to K, denoted by ∅K. If F(x)=∅ for all x∈E, then the soft set (F,E) is called a null soft set 

with respect to E, denoted by ∅E [4]. A soft set with an empty parameter set is denoted as ∅∅. It is obvious 

that ∅∅ is the only soft set with an empty parameter set. 

Definition 3 ([4]). Let (F,T) be a soft set over U. If F(x)=U for all x∈T, then the soft set (F,T) is called a 

relative whole soft set with respect to T, denoted by UT. If F(x)=U for all x∈E,  then the soft set (F,E) is called 

an absolute soft set and denoted by UE. 

Definition 4 ([3]). Let (F,T) and (G,Y) be soft sets over U. If T⊆Y and for all x∈T, F(x)⊆G(x), then (F,T) is 

said to be a soft subset of (G,Y), denoted by (F,T)⊆̃(G,Y). If (F,T)⊆̃(G,Y) and (G,Y)⊆̃(F,T), then (F,T) and 

(G,Y) are called soft equal sets. 

Definition 5 ([4]). Let (F,T) be a soft set over U. The relative complement of (F,T), denoted by (F,T)r 

=(Fr,T), is defined as follows: Fr(x)=U-F(x) for all x∈T. 

For two sets X and Y, X+Y=X'∪Y and XθY=X'∩Y', X*Y=X'∪Y', X𝛾Y= X'∩Y, X𝝺Y=X∪Y'. Let "⊜" be used to 

represent the set operations.  

Definition 6 ([4], [23]). Let (F, T) and (G, Y) be two soft sets over U. The restricted ⊜ operation of (F, T) 

and (G, Y) is the soft set (H, Z), denoted by (F,T)⊜R (G,Y)=(H,Z), where Z=T∩Y≠ ∅ and for all x∈Z, 

H(x)=F(x)⊜G(x). Here, if Z=T∩Y=∅, then (F,T)⊜R(G,Y)= ∅∅. 
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  Definition 7 ([2], [4]). Let (F, T) and (G, Y) be two soft sets over U. The extended ⊜ operation (F, T) and 

(G,Y) is the soft set (H,Z), denoted by (F, T)⊜ε(G, Y)=(H, Z), where Z=T∪Y, and for all x∈Z. 

Definition 8 ([24–26]). Let (F,T) and (G, Y) be two soft sets over U. The complementary extended ⊜ε 

operation (F,T) and (G,Y) is the soft set (H,Z), denoted by (F. T)
＊
 ⊜ε

(G, Y) = (H, Z), where Z=T∪Y, and for all 

x∈Z. 

Definition 9 ([5], [28]). Let (F,T) and (G,Y) be two soft sets on U. The soft binary piecewise ⊜ operation 

of (F,T) and (G,Y) is the soft set (H,T), denoted by (F. T)
~
⊜(G. Y) = (H. T), where for all x∈T. 

Definition 10 ([18], [20]). Let (F,T) and (G,Y) be two soft sets on U. The complementary soft binary 

piecewise ⊜ operation of (F,T) and (G,Y) is the soft set (H,T), denoted by (F, T)
＊
~
⊜
(G, Y) = (H, T), where for all 

x∈T 

For more about soft sets, we refer to [29–54]. 

For more on the band, (bounded) semilattice bounded semilattice, we refer to [55]; for more on semiring and 

hemiring, we refer to [56]; and for more on nearsemiring (or seminearring), we refer to [56]. Regarding the 

prospective effects of network analysis and graph applications on soft, sets-which are assigned by the 

divisibility of determinants, we refer to [57]. 

3|Restricted and Extended Lambda Operation 

This section introduces a new restricted and extended soft set operation called the restricted lambda and 

extended lambda. It examines the distributive rules over other types of soft sets, their relationship with other 

soft set operations, and their algebraic properties. It also investigated which algebraic structures these 

operations form on the SE(U) set, leading to important results. 

3.1|Restricted Lambda Operation and its Properties 

Definition 11. Let (F, T) and (G, Z) be soft sets over U, The restricted lambda of (F. T) and (G. Z), denoted by 

(F. T)λR(G. Z). is defined as (F. T)λR(G. Z) = (H. C), where C=T∩Z, and if C=T∩Z≠∅, then for all ⍺∊C, 

H(⍺)=F(⍺)λG(⍺)=F(⍺)∪G’(⍺); if C=T∩Z=∅, then (F,T)λR(G,Z)=(H, C)= ∅∅. 

Since the only soft set with an empty parameter set is ∅∅, if C=T∩Z= ∅, then it is obvious that (F,T)λR(G,Z)= 

∅∅. Thus, in order to define the restricted lambda operation of (F. T) and (G. Z), there is no condition that 

T∩Z≠ ∅. 

Example 1. Let E={e1,e2,e3,e4}be the parameter set, T = {e1. e3} and Z = {e2. e3. e4} be subsets of E, U =

{h1. h2. h3. h4. h5} be the universal set, (F,T) and (G,Z) be the soft sets over U as (F, T) = {(e1,. {h2. h5), 

(e3,{h1,h2,h5})}, (G,Z)={(e2,{h1,h4,h5}), {(e3,{h2,h3,h4}), (e4. h3,h5})}. Here, let (F,T)λR(G,Z)=(H,T∩ Z), 

H(x) = {

F(x).                x ∈ T − Y,
G(x).                x ∈ Y − T,
F(x) ⊜ G(x). x ∈ T ∩ Y,

  

H(x) = {

F′(x).             x ∈ T − Y,

G′(x).             x ∈ Y − T,
F(x) ⊜ G(x). x ∈ T ∩ Y,

  

H(x) = {
F(x).                x ∈ T − Y,
F(x) ⊜ G(x). x ∈ T ∩ Y,

  

H(x) = {
F′(x).              x ∈ T − Y,
F(x) ⋈ G(x). x ∈ T ∩ Y,
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  where for all ⍺ ∊ T ∩ Z={e3}. Thus, H(⍺)=F(⍺) ∪G’(⍺),H(e3)=F(e3)∪G' (e3)={h1,h2,h5}∪{h1, 

h5}={h1, h2, h5}. Thus,  

Theorem 1. Algebraic properties of the operation: Let (F,T), (G,T), (H,T), (G,Z), (H,M), (K,V) and (L,V) be 

soft sets over U. Then, 

I. The set SE(U) in closed under λR. 

Proof: it is clear that λR is a binary operation in SE(U). That is 

similarly, 

That is, let T be a fixed subset of the set E and (F,T) and (G,T) be elements of ST(U), then so is (F,T) λR(G,T). 

Namely, ST(U) is closed under λR either. 

Proof: let (F. T)λR(G. Z) = (S. T ∩ Z), where for all ⍺ ∊ T ∩ Z, T(⍺)=F(⍺)∪G’(⍺). Let (S,T∩Z)λR(H,M) 

=(R,(T∩Z)∩M)), where for all ⍺∊(T∩Z)∩M, R(⍺)=T(⍺)∪H' (⍺). Thus,  

Let (G. Z) λR(H.M) = (K. Z ∩ M), where for all ⍺∊Z∩M, K(⍺)=G(⍺)∪H’(⍺). Let (F,T) λR(K. Z ∩M) 

=(S,T∩(Z∩M)), where for all ⍺∊T∩(Z∩M), S(⍺)=F(⍺)∪K'(⍺). Thus,  

Thus, (R,(T ∩ Z) ∩ M) ≠(S, T∩(Z∩M)). That is, in SE(U), the operation λR is not associative. Here, it is 

obvious that if T∩Z= ∅ or Z∩M= ∅ or T∩M= ∅, then since both sides of the equality are ∅∅, the operation 

λR is associative under these conditions. 

Proof: let (F,T)λR(G,T)=(K,T), where for all ⍺∊T∩T=T, K(⍺)=F(⍺)∪G’(⍺). Let (K,T)λR(H,T)=(R,T), where 

for all ⍺∊T∩T=T, R(⍺)=K(⍺)∪H’(⍺). Hence, 

Let (G,T)λR(H,T)=(L,T), where for all ⍺∊T∩T, L(⍺)=G(⍺)∪H’(⍺). Let (F,T) λR(L,T)=(N,T), where for all 

⍺∊T∩T, N(⍺)= F(⍺)∪L'(⍺). Hence, 

Thus, (R,T)≠(N,T). That is, λR is not associative in the collection of soft sets with a fixed parameter set. 

Proof: let (F,T) λR(G,Z)=(H,T∩Z), where for all ⍺∊T∩Z, H(⍺)=F(⍺)∪G’(⍺). Let (G,Z) λR(F,T)=(S,Z∩T), where 

for all ⍺∊Z∩T, S(⍺)=G(⍺)∪F’(⍺). Thus,  

(F,T)λR(G,Z)={(e3,{h1, h2,h5})}.  

λR:SE(U)x SE(U)→ SE(U).  

((F,T), (G,Z))→ (F, T)λR(G, Z) =(H,T∩ Z).  

λR:ST(U)x ST(U)→ST(U).  

((F,T), (G,T))→ (F, T)λR(G, T) =(H,T∩ T)=(H,T).  

[(F,T)λR(G,Z)] λR(H,M)≠(F,T)λR[(G,Z)λR(H,M)].  

R(⍺)=[F(⍺)∪G’(⍺)]∪H’(⍺).  

S(⍺)=F(⍺)∪[G’(⍺)∩H(⍺)].  

[(F,T)λR(G,T)]λR(H,T)≠(F,T)λR[(G,T)λR(H,T)].  

R(⍺)=[F(⍺)∪G’(⍺)]∪H’(⍺).  

N(⍺)=F(⍺) ∪ [G’(⍺)∩H(⍺)].  

(F,T) λR(G,Z)≠(G,Z)λR(F,T).  

(F,T) λR(G,Z)≠(G,Z) λR(F,T).  
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  That is, λR is not commutative in SE(U). Here, it is obvious that if T∩Z= ∅, then since both sides are ∅∅, λR 

is commutative in SE(U) under this condition. Moreover, it is evident that (F,T)λR(G,T)≠(G,T) λR(F,T), 

namely, λR is not commutative in the collection of soft sets with a fixed parameter set. 

Proof: let (F,T)λR(F,T)=(H,T∩T). Thus, for all ⍺∊T, H(⍺)=F(⍺)∪F’(⍺)=U. Hence, (H,T)= UT. 

That is, the operation λR is not idempotent in SE(U).  

Proof: let ∅T=(S,T), where for all ⍺∊T, S(⍺)= ∅. Let (F,T)λR(S,T)=(H,T∩T), where for all ⍺∊T, 

H(⍺)=F(⍺)∪S’(⍺)=F(⍺)∪ U=U. Thus, (H,T)= UT. 

Proof: let ∅T=(S,T), where for all ⍺∊T, S(⍺)=∅. Let (S,T)λR(F,T)=(H,T∩T), where for all ⍺∊T, 

H(⍺)=S(⍺)∪F’(⍺)=∅ ∪F’(⍺)=F’(⍺). Thus, (H,T)= (F, T)r.  

Proof: let ∅M=(S,M), where for all ⍺∊M, S(⍺)=∅. Let (F,T)λR(S,M)=(H,T∩M), where for all ⍺∊T∩M, 

H(⍺)=F(⍺)∪S’(⍺)=F(⍺)∪U=U. Thus, (H,T∩M)= UT∩M.   

Proof: let ∅M=(S,M), where for all ⍺∊M, S(⍺)=∅. Let (S,M) λR (F,T)=(H,M∩T), where for all ⍺∊M∩T, 

H(⍺)=S(⍺)∪F’(⍺)=∅ ∪ F(⍺)=F(⍺). Thus, (H,M∩T)=(F,M∩T). 

Proof: let ∅E=(S,E), where for all ⍺∊E, S(⍺)=∅. Let (F,T)λR(S,E)=(H, T∩E), where for all ⍺∊T∩E=T, 

H(⍺)=F(⍺)∪S’(⍺)=F(⍺)∪U=U. Thus, (H,T)= UT.  

Proof: let ∅E=(S,E), where for all ⍺∊E, S(⍺)=∅. Let (S,E) λR(F,T)=(H,E∩T), where for all ⍺∊e∩t=t, 

H(⍺)=S(⍺) ∪F’(⍺)=∅ ∪F’(⍺)=F’(⍺). Thus, (H,T)= (F, T)r.    

Proof: let ∅∅=(S,∅). Thus, (F,T) λR(S,∅)=(H,T ∩ ∅)=(H, ∅). Since ∅∅ is the only soft set with the empty 

parameter set, (H, ∅)=∅∅. That is, the absorbing element of λR in SE(U) is the soft set  

Proof: let UT=(K,T), where for all ⍺∊T, K(⍺)=U. Let (F,T) λR(K, T)=(H,T∩T), where for all ⍺∊T, H(⍺)= 

F(⍺)∪T’(⍺)=F(⍺)∪ ∅=(F,T). Thus, (H,T)= (F,T). That is, the right identity element of λR in ST(U) is the soft 

set UT. 

Proof:  let UT = (K. T), where for all ⍺ ∊ T. K(⍺) = U. Let (K. T) λR(F. T) = (H. T ∩ T), where for all ⍺ ∊ T, 

H(⍺) = T(⍺) ∪ F’(⍺) = U ∪ F’(⍺) = U. Thus, (H. T) = UT. That is, the left-absorbing element of  λR in ST(U) 

is the soft set UT. 

Proof: let UM=(K,M). Thus, for all ⍺∊M, K(⍺)=U. Let (F,T)λR(K,M)=(H,T∩M), where for all ⍺∊T∩M, 

H(⍺)=F(⍺)∪T’(⍺)=F(⍺)∪∅=F(⍺). Thus, (H, T∩M)=(F,T∩M).  

(F,T) λR(F,T)= UT.  

(F,T) λR∅T=UT.  

∅TλR(F,T)=(F, T)r,  

(F,T)λR∅M=UT∩M.   

∅M λR(F,T)= (F,M∩T).  

(F,T)λR∅E=UT.    

∅EλR(F,T)=(F, T)r.   

(F,T) λR ∅∅=∅∅λR(F,T)= ∅∅.  

(F,T) λRUT =(F,T).  

UTλR (F,T)= UT.  

(F,T)λRUM= (F,T∩M).  
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Proof: let UM=(K,M), where for all ⍺∊M, K(⍺)=U. Let (K,M) λR(F,T)=(H,M∩T), where for all ⍺∊M∩T, 

H(⍺)=T(⍺)∪F’(⍺)=U∪F’(⍺)=U. Thus, (H, M∩T)= UT∩M. 

Proof: let UE = (K, E), where for all ⍺ ∊ E, K(⍺) = U. Let (F. T) λR(K. E) = (H. T ∩ E), where for all ⍺ ∊ T ∩ E =

T. H(⍺) = F(⍺) ∪ K’(⍺) = F(⍺) ∪ ∅ = F(⍺). Thus (H. T) = (F. T). That is, the right identity element of  λR in 

ST(U) is the soft set UE.         

Proof:  let UE = (KE), where for all ⍺ ∊ E, K(⍺) = U. Let (K,E) λR(F. T) = (H. E ∩ T), where for all ⍺ ∊ E ∩ T =

T, H(⍺) = T(⍺) ∪ F’(⍺) = U ∪ F’(⍺) = U. Thus (H, T) = UT.    

Proof: let (F. T)r = (H. T), where for all ⍺ ∊ T, H(⍺) = F’(⍺). Let (F. T)λR(H. T) = (L. T ∩ T), where for all ⍺ ∊

T, L(⍺) = F(⍺) ∪ H’(⍺) = F(⍺) ∪ F(⍺) = F(⍺). Thus, (L. T) = (F. T). That is, every relative complement of the 

soft set is its own right identity element for λR in SE(U). 

Proof: let (F. T)r = (H. T), where for all ⍺ ∊ T, H(⍺) = F’(⍺). Let (H. T)λR(F. T) = (L. T ∩ T), where for all ⍺ ∊

T, T(⍺) = H(⍺) ∪ F’(⍺) = F’(⍺) ∪ F’(⍺) = F’(⍺). Thus (L. T) = (F. T)r. That is, every relative complement of 

the soft set is its own left-absorbing element for λR in SE(U). 

Proof: let (F. T)λR(G. Z) = (H. T ∩ Z), where for all ⍺ ∊ T ∩ Z, H(⍺) = F(⍺) ∪ G’(⍺). Let (H. T ∩ Z)r = (K. T ∩

Z), where for all ⍺ ∊ T ∩ Z, K(⍺) = F’(⍺) ∩ G(⍺). Thus, (K. T ∩ Z) = (F. T)γR(G. Z). Here, if T ∩ Z = ∅, then 

both side is the soft set ∅∅, and so the equality is again satisfied.  

Proof: let (F. T)λR(G. T) = (K. T ∩ T), where for all ⍺ ∊ T, K(⍺) = F’(⍺) ∪ G(⍺). Since (K. T) = ∅T, for all ⍺ ∊

T, K(⍺) = ∅. Thus, for all ⍺ ∊ T, K(⍺) = F(⍺) ∪ G’(⍺) = ∅ ⇔ for all ⍺ ∊ T, F(⍺) = ∅ and G’(⍺) = ∅ ⇔ for all 

⍺ ∊ T, F(⍺) = ∅ and G(⍺) = U ⇔ (F. T) = ∅T and (G. T) = UT. 

Proof: let (F. T)λR(G. Z) = (H. T ∩ Z), where for all ⍺ ∊ T ∩ Z, H(⍺) = F ∪ G’(⍺). Since, for all ⍺ ∊ T ∩ Z, 

F(⍺) ⊆ F(⍺) ∪ G′(⍺) = H(⍺) and G’(⍺) ⊆ F(⍺) ∪ G′(⍺) = H(⍺). Thus, (F. T ∩ Z ⊆̃ (F. T) λR(G, Z) and (G, T ∩

Z)r ⊆̃ (F. T) λR(G, Z).   

Proof: let (F. T) λR(G. T) = (H. T ∩ T), where for all ⍺ ∊ T, H(⍺) = F(⍺) ∪ G’(⍺). Since for all ⍺ ∊ T, F(⍺) ⊆

F(⍺) ∪ G’(⍺) = H(⍺) Thus (F. T) ⊆̃ (F. T)λR(G. T). Similarly, since G’(⍺) ⊆ F(⍺) ∪ G’(⍺) = H(⍺) Thus 

(G. T)r ⊆̃ (F. T)λR(G. T). 

If (F. T) ⊆̃ (G. K). then (F. T) λR (H. Z) ⊆̃ (G. K) λR (H. Z) and (H. Z) λR (G. T) ⊆̃ (H. Z) λR (F. T), 

Proof: let (F. T) ⊆̃ (G. T). Then, for all ⍺ ∊ T, F(⍺) ⊆ G(⍺). Let (F. T) λR (H. Z) = (W. T ∩ Z), where for all ⍺ ∊

T ∩ Z, W(⍺) = F(⍺) ∪ H’(⍺). Let (G. K) λR (H. Z) = (L. T ∩ Z), where for all ⍺ ∊ T ∩ Z, L(⍺) = F(⍺) ∪ H’(⍺). 

Since for all ⍺ ∊ T ∩ Z, (F. T) λR(H. Z) ⊆̃ (G. K) λR (H. Z) and H(⍺) ∪ G’(⍺) ⊆ H(⍺) ∪ F’(⍺). Also, since for all 

UMλR(F,T)= UT∩M.  

(F,T) λR UE=(F, T).  

UEλR(F. T) = UT,     

(F. T)λR(F. T)
r = (F. T),     

(F. T)r λR(F. T) = (F. T)
r,  

[(F. T)λR(G. Z)]
r = (F. T)γR(G. Z),  

(F. T)λR(G. T) = ∅T ⇔ (F. T) = ∅T and (G. T) = UT,  

∅T∩Z ⊆̃ (F. T)λR(G. Z) and (F. T)λR(G, Z) ⊆̃ UT and (F, T)λR(G, Z) ⊆̃ UZ,  

(F. T ∩ Z) ⊆̃ (F. T)λR(G. Z) and (G. T ∩ Z)
r ⊆̃ (F. T)λR(G. Z),    

(F. T) ⊆̃ (F. T)λR(G. T) and (G. T)
r ⊆̃ (F. T)λR(G. T),   
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  ⍺ ∊ Z ∩ T, H(⍺) ∪ G’(⍺) ⊆ H(⍺) ∪ F’(⍺), (H. Z) λR (G. T) ⊆̃ (H. Z) λR (F. T). Here, if T ∩ Z = ∅, then both side 

is the soft set ∅∅, and so the property is again satisfied. 

If (F. T) λR(H. Z) ⊆̃ (G. K) λR (H. Z), then (F. T) ⊆̃ (G. K) needs not be true. That is, the converse of Theorem 1 

is not true. Similarly, if (H. Z) λR (G. T) ⊆̃ (H. Z) λR (F. T), (F. T) ⊆̃ (G. K) needs not be true. 

Proof: we give a counterexample to show that the onverse of Theorem 1 is not true. Let E = {e1 . e2. e3. e4. e5} 

be the parameter set, T = {e1. e3}, K={e1. e3. e5}, and Z = {e1. e3. e5. e6} be the subsets of E, U =

{h1. h2. h3. h4. h5} be the universal set, and (F,T), (G,K) and (H,Z) be the soft sets as follows: 

Let (F,T) λR(H,Z)=(L,T∩ Z), where for all ⍺ ∊ T ∩ Z={e1. e3}, L(⍺)=F(⍺)∪H’(⍺), L(e1)=F(e1)∪H'(e1) =U, 

L(e3)=F(e3)∪H' (e3)=U. Thus, (F,T) λR (H,Z) = {(e1,U), (e3,U)}.  

Now let (G,K) λR (H,Z)=(K,K∩Z), where for all ⍺ ∊ K ∩  Z = {e1, e3, e5}, K(⍺)=G(⍺) ∪H’(⍺), 

K(e1)=G(e1)∪H’(e1) =U,  K(e3)=G(e3)∪H’(e3)=U, W(e5)=F(e5)∪H’(e5)=U. Thus, (G,K) λR (H,Z) ={(e1,U), 

(e3,U), (e5,U)}. 

It is observed that (F,T) λR (H,Z) ⊆̃(G,K) λR(H,Z); however, (F,T) is not a soft subset of (G, K). Similarly, one 

can show that if (H,Z) λR (G,T) ⊆̃ (H,Z) λR (F,T), then (F,T) ⊆̃ (G, K) needs not to be true. 

If (F,T) ⊆̃ (G. T) and (K,V) ⊆̃ (L. V), (F,T) λR(L,V) ⊆̃(G,T) λR (K,V). Similarly, (K,V) λR(G,T) ⊆̃(L,V) λR (F,T). 

Proof: let (F,T) ⊆̃ (G. T) and (K,V) ⊆̃ (L. V), Thus, for all ⍺∊T and for all ⍺∊Z, F(⍺)⊆ G(⍺) and K(⍺)⊆ L(⍺). 

Hence, for all ⍺∊T, G' (⍺)⊆ F′(⍺) and for all ⍺∊Z, L’(⍺)⊆ K′(⍺). Let  (F,T) λR (L,V)=(M,T∩ V). Thus, for all 

⍺∊T∩ V, M(⍺)=F(⍺)∪L’(⍺). Let  (G,T) λR (K,V)=(N,T∩ V). Thus, for all ⍺∊T∩ V, N(⍺)=G(⍺)∪K'(⍺). Since, 

for all ⍺∊T∩ V, F(⍺)⊆ G(⍺) and L’(⍺)⊆ K′(⍺), M(⍺)=F(⍺)∪L’(⍺)⊆ G(⍺) ∪ K′(⍺) = N(⍺). Thus, 

(F, T) λR(L, V)  ⊆̃ (G, T) λR (K, V). Under similar conditions, since for all ⍺ ∊ 𝑉 ∩ 𝑇, 𝐾(⍺) ∪ 𝐺’(⍺) ⊆ 𝐿(⍺) ∪

𝐹’(⍺) and (𝐾. 𝑉)𝜆𝑅(𝐺. 𝑇) ⊆̃ (𝐿. 𝑉) 𝜆𝑅(𝐹. 𝑇) can be illustrated similarly. Here, if T ∩ V = ∅, then both side is the 

soft set ∅∅, and so the property is again satisfied. 

Theorem 2. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, restricted lambda operation distributes 

over other restricted soft set operations as follows: 

I. LHS Distributions: 

Proof: consider first the LHS. Let (G,Z)∩R(H,M)=(R,Z∩M), where for all ⍺∊Z∩M, R(⍺)=G(⍺)∩H(⍺). Let 

(F,T) λR(R,Z∩M)=(N,T∩(Z∩M)), where for all ⍺∊T∩(Z∩M),  N(⍺)= F(⍺)∪R' (⍺). Thus, for all ⍺∊T∩Z∩M,   

Now consider the RHS, i.e. [(F,T) λR(G,Z)] ∪R [(F,T) λR(H,M)]. Let (F,T) λR (G,Z)=(V,T∩Z), where for all 

⍺∊T∩Z, V(⍺)=F(⍺)∪G’(⍺) and let (F,T)λR (H,M)=(W,T∩M), where for all ⍺∊T∩M, W(⍺)=F(⍺)∪H’(⍺). Let 

(V,T∩Z) ∪R(W,T∩M)=(S,(T∩Z)∩(T∩M)), where for all ⍺∊T∩Z∩M, S(⍺)=V(⍺)∪W(⍺). Thus, 

Hence, (N,T∩Z∩M)=(S,T∩Z∩M). Here, if T∩Z=∅ or T∩M=∅ or Z∩M=∅, then both sides is ∅∅. Thus, the 

equality is satisfied in all circumstances. 

(F,T)={(e1.{h2. h5,}),(e3,{h1,h2,h5,})}.  

(G,K)={(e1,.{h2}),(e3,{h1,h2}). (e5,U)}.  

(H,Z)={( e1,∅),(e3,∅),(e5,U),(e6,U)}.  

(F,T) λR [(G,Z)∩R(H,M)] = [(F,T) λR(G,Z)] ∪R [(F,T) λR(H,M)].  

N(⍺)= F(⍺)∪[(G’(⍺)∪H’(⍺)].  

S(⍺)= [F(⍺)∪G’(⍺)]∪[F(⍺)∪H’(⍺)].  

(F,T) λR[(G,Z) ∪R (H,M)] = [(F,T) λR(G,Z)] ∩R [(F,T) λR (H,M)].  

(F,T) λR [(G,Z) θR (H,M)] = [(F,T) ∪R(G,Z)]  ∪R [(F,T) ∪R (H,M)].  
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II. RHS Distributions: 

Proof: consider first the LHS. Let (F,T)∪R(G,Z)=(R,T∩Z), where for all ⍺∊T∩Z, R(⍺)=F(⍺)∪G(⍺). Let 

(R,T∩Z) λR(H,M)=(N,(T∩Z)∩M)), where for all ⍺∊(T∩Z)∩M, N(⍺)=R(⍺)∪H' (⍺). Thus, 

Now consider the RHS, i.e. [(F,T) λR(H,M)] ∪R [(G,Z) λR (H,M)]. Let (F,T)λR(H,M)=(S,T∩M), where for all 

⍺∊T∩M, T(⍺)=F(⍺)∪H’(⍺) and let (G,Z) λR(H,M)= (K,Z∩M), where for all ⍺∊Z∩M, K(⍺)=G(⍺)∪H' (⍺). 

Assume that (S,T∩Z) ∪R(K,Z∩M)=(L,(T∩Z∩M)),  where for all ⍺∊(T∩Z)∩(Z∩M), L(⍺)=S(⍺)∪K(⍺). Thus,  

Hence, (N,T∩Z∩M)=(L,T∩Z∩M). Here, if T∩Z=∅ or T∩M=∅ or Z∩M=∅, then both sides is ∅∅. Thus, the 

equality is satisfied in all circumstances. 

Theorem 3. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, restricted lambda operation distributes 

over extended soft set operations as follows: 

I. LHS Distributions: 

Proof: consider first the LHS. Let (G,Z) ∩ε (H,M)=(R,Z∪M), where for all ⍺∊Z∪M, 

Let (F,T)λR(R,Z∪M)=(N,(T∩(Z∪M)), where for all ⍺∊T∩(Z∪M), N(⍺)=F' (⍺)∪R(⍺). Thus, 

Now consider the RHS, i.e. [(F,T) λR(G,Z)] ∪ε [(F,T) λR (H,M)]. Let  (F,T)λR(G,Z)=(K,T∩Z), where for all 

⍺∊T∩Z, K(⍺)=F(⍺)∪G’(⍺) and let (F,T)λR(H,M)=(S,T∩M), where for all ⍺∊T∩M, S(⍺)= F(⍺)∪H’(⍺). Let  

(K,T∩Z) ∪ε(S,T∩M)=(L,(T∩Z)∪(T∩M)), where for all ⍺∊(T∩Z)∪(T∩M), 

Thus, 

(F,T) λR [(G,Z) ＊R (H,M)] = [(F,T) ∪R(G,Z)] ∩R [(F,T) ∪R (H,M)].  

[(F,T) ∪R (G,Z)] λR(H,M)=[(F,T) λR(H,M)] ∪R [(G,Z) λR (H,M)].  

N(⍺)= [F(⍺)∪G(⍺)]∪H’(⍺).  

L(⍺)=[ F(⍺)∪H’(⍺)] ∪ [G(⍺)∪H’(⍺)].  

[(F,T) ∩ε (G,Z)] λR (H,M)=[(F,T) λR(H,M)] ∩R[(G,Z) λR(H,M)].  

[(F,T) θR (G,Z)] λR (H,M)= [(F,T) ＊R(H,M)] ∩R [(G,Z) ＊R(H,M)].  

[(F,T)＊R(G,Z)] λR(H,M)= [(F,T) ＊R(H,M)] ∪R [(G,Z) ＊R (H,M)].  

(F,T) λR[(G,Z) ∩ε(H,M)] = [(F,T) λR(G,Z)] ∪ε [(F,T) λR (H,M)].  

R(⍺)  = {
G(⍺).                  ⍺ ∊ Z −M,
H(⍺).                 ⍺ ∊ M − Z,
G(⍺) ∩ H(⍺).   ⍺ ∊ Z ∩M,

        

N(⍺)={

F(⍺) ∪ G’(⍺).                        ⍺ ∊ T ∩ (Z − M) = T ∩ Z ∩ M’,         
F(⍺) ∪ H’(⍺).                        ⍺ ∊ T ∩ (M − Z) = T ∩ Z’ ∩ M,         
F(⍺) ∪ [G’(⍺) ∪ H’(⍺)].      ⍺ ∊ T ∩ (Z ∩ M) = T ∩ Z ∩ M,          

       

L(⍺) = {
K(⍺).                  ⍺ ∊ (T ∩ Z) − (T ∩M) = T ∩ (Z − M),
S(⍺).                  ⍺ ∊ (T ∩ M) − (T ∩ Z) = T ∩ (M − Z),
K(⍺) ∪ S(⍺).    ⍺ ∊ (T ∩ Z) ∩ (T ∩ M) = T ∩ (Z ∩ M),

        

L(⍺) = {
F(⍺) ∪ G’(⍺).                                           ⍺ ∊ T ∩ Z ∩ M’,
F(⍺) ∪ H’(⍺).                                           ⍺ ∊ T ∩ Z’ ∩ M,
[F(⍺) ∪ G’(⍺)] ∪ [F(⍺) ∪ H’(⍺)].        ⍺ ∊ T ∩ Z ∩ M,
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  Hence, (N,T∩(Z∪M))=(L,(T∩Z)∪(T∩M)). Here, if T∩Z=∅, then N(⍺)=L(⍺)=F(⍺)∪H’(⍺), and if T∩M=∅, 

then N(⍺)=L(⍺)=F(⍺)∪G’(⍺). Thus, there is no extra condition as T∩Z≠ ∅ and/or T∩M≠ ∅  for satisfying 

Theorem 3. 

II. RHS Distributions: 

Proof: consider first the LHS. Let (F,T) ∪ε(G,Z)=(R,T∪Z), where for all ⍺∊T∪Z, 

Assume that (R,T∪Z) λR(H,M)=(N,(T∪Z)∩M)), where for all ⍺∊(T∪Z)∩M, N(⍺)=R(⍺)∪H' (⍺). Thus, 

Now consider the RHS, i.e. [(F,T) λR(H,M)] ∪ε [(G,Z) λR (H,M)]. Let (F,T) λR (H,M)=(K,T∩M), where for all 

⍺∊T∩M, K(⍺)=F(⍺)∪H’(⍺) and let (G,Z) λR (H,M)=(S,Z∩M), where for all ⍺∊Z∩M, S(⍺)=G(⍺)∪H’(⍺). Let 

(K,T∩M) ∪ε(S,Z∩M)=(L,( (T∩M)∪(Z∩M)). Hence, 

Thus, 

Therefore, (N,(T∪Z)∩M)) = (L,(T∩M)∪(Z∩M)). 

Here, if T∩Z=∅ and ⍺∊T∩Z’∩M, then N(⍺)=L(⍺)=F’(⍺)∪H(⍺) and if T∩Z=∅ and ⍺∊T’∩Z∩M, the 

N(⍺)=L(⍺)=G(⍺)∪H’(⍺). Furthermore, if Z∩M=∅, then N(⍺)=L(⍺)=F(⍺)∪H’(⍺). Thus, there is no extra 

condition as T∩Z≠ ∅ and/or Z∩M≠ ∅  for satisfying Theorem 3. 

Theorem 4. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, restricted lambda operation distributes 

over complementary extended soft set operations as follows: 

I. LHS Distributions: 

Proof: consider first the LHS. Let (G,Z)
＊
  ＊ε

(H,M)=(R,Z∪M), where for all ⍺∊Z∪M, 

Let (F,T)λR(R,Z∪M)=(N,(T∩(Z∪M)), where for all ⍺∊T∩(Z∪M), N(⍺)=F(⍺)∪R' (⍺). Thus, 

(F,T) λR[(G,Z) ∪ε (H,M)] = [(F,T) λR(G,Z)] ∩ε[(F,T) λR (H,M)].  

[(F,T)∪ε(G,Z)] λR(H,M)= [(F,T) λR(H,M)] ∪ε [(G,Z) λR (H,M)].  

R(⍺) = {

F(⍺).                  ⍺ ∊ T − Z,
G(⍺).                  ⍺ ∊ Z − T,
F(⍺) ∪ G(⍺).     ⍺ ∊ T ∩ Z,

       

N(⍺) = {

F(⍺) ∪ H’(⍺).                       ⍺ ∊ (T − Z) ∩ M = T ∩ Z’ ∩ M,   
G(⍺) ∪ H’(⍺).                       ⍺ ∊ (Z − T) ∩ M = T’ ∩ Z ∩ M,   
[F(⍺) ∪ G(⍺)] ∪ H’(⍺).      ⍺ ∊ (T ∩ Z) ∩ M = T ∩ Z ∩ M,    

        

L(⍺) = {

K(⍺).                         ⍺ ∊ (T ∩ M) − (Z ∩ M) = (T − Z) ∩M,
S(⍺).                          ⍺ ∊ (Z ∩ M) − (T ∩ M) = (Z − T) ∩M,
K(⍺) ∪ S(⍺).            ⍺ ∊ (T ∩ M) ∩ (Z ∩ M) = (T ∩ Z) ∩ M,

        

L(⍺) = {
F(⍺) ∪ H’(⍺).                                          ⍺ ∊ T ∩ Z’ ∩ M,        
G(⍺) ∪ H’(⍺).                                          ⍺ ∊ T’ ∩ Z ∩ M,        
[F(⍺) ∪ H’(⍺)] ∪ [G(⍺) ∪ H’(⍺)].        ⍺ ∊ T ∩ Z ∩ M,          

        

     [(F,T) ∩ε (G,Z)] λR(H,M)= [(F,T) λR(H,M)] ∩ε [(G,Z) λR (H,M)].                      

 (F,T) λR[(G,Z)
＊
  ＊ε

 (H,M)] = [(F,T)∪R(G,Z)] ∩ε[(F,T) ∪R (H,M)].  

R(⍺) = {

G’(⍺).                        ⍺ ∊ Z − M,
H’(⍺).                        ⍺ ∊ M − Z,
G’(⍺) ∪ H’(⍺).        ⍺ ∊ Z ∩ M,
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Now consider the RHS, i.e. (F,T)∪R(G,Z)=(K,T∩Z) where for all ⍺∊T∩Z, K(⍺)=F(⍺)∪G(⍺). Let 

(F,T)∪R(H,M)=(S,T∩M), where for all ⍺∊T∩M, S(⍺)=F(⍺)∪H(⍺). Assume that (K,T∩Z)∩ε(S,T∩M)=( 

L,(T∩Z)∪(T∩M)), where for all ⍺∊(T∩Z)∪(T∩M), 

Thus, 

Therefore, (N,(T∩(Z∪M))=(L,(T∩Z)∪(T∩M)). Here, if T∩Z=∅, then N(⍺)=L(⍺)=F(⍺)∪H(⍺), and if 

T∩M=∅, then N(⍺)=L(⍺)=F(⍺)∪G(⍺). Thus, there is no extra condition as T∩Z≠ ∅ and/or T∩M≠ ∅  for 

satisfying Theorem 3. 

II. RHS Distributions: 

Proof: consider first the LHS. Let (F,T)
＊
  θε

 (G,Z)=(R,T∪Z), where for all ⍺∊T∪Z, 

Let (R,T∪Z) λR(H,M) =(N,(T∪Z)∩M), where for all ⍺∊(T∪Z)∩M, N(⍺)=R' (⍺)∪H(⍺). Thus,  

Now consider the RHS, i.e. [(F,T) ＊R(H,M)] ∩ε[(G,Z) ＊R(H,M)]. Let (F,T)＊R(H,M)=(K,T∩M), where for all 

⍺∊T∩M, K(⍺)=F’(⍺)∪H’(⍺) and let (G,Z) ＊R(H,M)=(S,Z∩M), where for all ⍺∊Z∩M, S(⍺)=G’(⍺)∪H’(⍺). 

Assume that (K,T∩M)∩ε(S,Z∩M)=(L,(T∩M)∪(Z∩M)), where for all ⍺∊(T∩M)∪(Z∩M), 

Thus, 

Therefore, (N,(T∪Z)∩M)=(L,(T∩M)∪(Z∩M)). Here, if T∩Z=∅ and ⍺∊T∩Z’∩M, then 

N(⍺)=L(⍺)=F’(⍺)∪H’(⍺) and if T∩Z=∅ and ⍺∊T’∩Z∩M, the N(⍺)=L(⍺)=G’(⍺)∪H’(⍺). Furthermore, if 

N(⍺) = {

F(⍺) ∪ G(⍺).                      ⍺ ∊ Z −M,
F(⍺) ∪ H(⍺).                      ⍺ ∊ M − Z,
F(⍺) ∪ [G(⍺) ∩ H(⍺)].     ⍺ ∊ Z ∩M,

  

L(⍺) = {
K(⍺).                   ⍺ ∊ (T ∩ Z) − (T ∩ M) = T ∩ (Z − M),
S(⍺).                    ⍺ ∊ (T ∩M) − (T ∩ Z) = T ∩ (M − Z),
K(⍺) ∩ S(⍺).      ⍺ ∊ (T ∩ Z) ∩ (T ∩ M) = T ∩ (Z ∩ M),

  

L(⍺) = {
F(⍺) ∪ G(⍺).                                            ⍺ ∊ T ∩ Z ∩M’,
F(⍺) ∪ H(⍺).                                            ⍺ ∊ T ∩ Z’ ∩ M,
[F(⍺) ∪ G(⍺)] ∩ [F(⍺) ∪ H(⍺)].        ⍺ ∊ T ∩ Z ∩M,

  

(F,T) λR [(G,Z) 
＊
θε

 (H,M)] = [(F,T) ∪R(G,Z)] ∪R [(F,T) ∪R (H,M)].  

[(F,T) 
＊
θε

 (G,Z)] λR(H,M)=[(F,T)＊R(H,M)] ∩ε[(G,Z)＊R(H,M)].  

R(⍺)  = {

F’(⍺).                       ⍺ ∊ T − Z,
G’(⍺).                       ⍺ ∊ Z − T,
F’(⍺) ∩ G’(⍺).         ⍺ ∊ T ∩ Z,

  

N(⍺) =  {
F’(⍺) ∪ H’(⍺).                                         ⍺ ∊ (T − Z) ∩ M = T ∩ Z’ ∩ M,
G’(⍺) ∪ H’(⍺).                                          ⍺ ∊ (Z − T) ∩ M = T’ ∩ Z ∩ M,
[F’(⍺) ∩ G’(⍺)] ∪ H’(⍺).             ⍺ ∊ (T ∩ Z) ∩ M = T ∩ Z ∩ M,             

  

𝐿(⍺) = {

K(⍺).                       ⍺ ∊ (T ∩ M) − (Z ∩ M) = (T − Z) ∩M,   
S(⍺).                       ⍺ ∊ (Z ∩ M) − (T ∩ M) = (Z − T) ∩M,   
K(⍺) ∩ S(⍺).         ⍺ ∊ (T ∩ M) ∩ (Z ∩ M) = (T ∩ Z) ∩ M,   

  

L(⍺) = {

F’(⍺) ∪ H’(⍺).                                         ⍺ ∊ T ∩ Z’ ∩ M,
G’(⍺) ∪ H’(⍺).                                         ⍺ ∊ T’ ∩ Z ∩ M,
[F’(⍺) ∪ H’(⍺)] ∩ [G’(⍺) ∪ H’(⍺)].     ⍺ ∊ T ∩ Z ∩ M,
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  Z∩M=∅, then N(⍺)=L(⍺)=F’(⍺)∪H’(⍺). Thus, there is no extra condition as T∩Z≠ ∅ and/or Z∩M≠ ∅  for 

satisfying Theorem 4. 

Theorem 5. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, restricted lambda operation distributes 

over soft binary piecewise operations as follows: 

I. LHS distributions: 

Proof: consider first the LHS. Let (G,Z)
~
∩ (H,M)=(R,Z), where for all ⍺∊Z,         

Let (F,T) λR (R,Z) =(N,T∩Z), where for all ⍺∊T∩Z, N(⍺)=F(⍺)∪R’(⍺). Thus, 

Now consider the RHS, i.e. [(F,T) λR(G,Z)]
 ~
 ∪ [(F,T) λR (H,M)]. Let (F,T)λR(G,Z)=(K,T∩Z), where for all 

⍺∊T∩Z, K(⍺)=F(⍺)∪G’(⍺). Let (F,T) λR (H,M)=(S,T∩M), where for all ⍺∊T∩M, S(⍺)=F(⍺)∪H’(⍺) and assume 

that (K,T∩Z)
~
∪ (S,T∩M)=(L,T∩Z), where for all ⍺∊T∩Z, 

Thus, 

Hence, (N. T ∩ Z) = (L. T ∩ Z). Here, if T ∩ Z = ∅, then (N,T∩Z)=(L,T∩Z)=∅∅, and if T∩M=∅, then 

N(⍺)=L(⍺)=F(⍺)∪G’(⍺). Thus, there is no extra condition as T∩Z≠ ∅ and/or T∩M≠ ∅  for satisfying Theorem 

5. 

II. RHS distributions: 

Proof: consider first the LHS. Let (F,T) 
~
∪ (G,Z)=(R,T), where for all ⍺∊T, 

Let (R,T) λR (H,M) =(N,T∩M), where for all ⍺∊T∩M, N(⍺)=R’(⍺)∪H(⍺). Thus,  

Now consider the RHS, i.e. [(F,T) λR(H,M)] 
~
∪ [(G,Z) λR (H,M)]. Let (F,T)λR(H,M)=(K,T∩M), where for all 

⍺∊T∩M, K(⍺)=F(⍺)∪H’(⍺). Assume that (G,Z) λR (H,M)=(S,Z∩M), where for all ⍺∊Z∩M, S(⍺)=G(⍺)∪H’(⍺) 

and let (K,T∩M) 
~
∪(S,Z∩M)=(L,T∩M), where for all ⍺∊T∩M, 

Hence, 

[(F,T) 
＊
 ＊ε

(G,Z)] λR(H,M)= [(F,T)＊R(H,M)] ∪ε[(G,Z)＊R(H,M)].  

(F,T) λR[(G,Z) 
~
∩ (H,M)]=[(F,T) λR(G,Z)]

 ~
 ∪ [(F,T) λR (H,M)].  

R(⍺) = {
G(⍺).                      ⍺ ∊ Z − M,     
G(⍺) ∩ H(⍺).       ⍺ ∊ Z ∩ M,     

   

N(⍺) = {
F(⍺) ∪ G’(⍺).                         ⍺ ∊ T ∩ (Z − M) = T ∩ Z ∩ M’,
F(⍺) ∪ [G’(⍺) ∪ H’(⍺)].       ⍺ ∊ T ∩ (Z ∩ M) = T ∩ Z ∩ M,

  

L(⍺) = {
K(⍺).                   ⍺ ∊ (T ∩ Z) − (T ∩ M) = T ∩ (Z − M),

K(⍺) ∪ S(⍺).      ⍺ ∊ (T ∩ Z) ∩ (T ∩ M) = T ∩ (Z ∩ M),
  

L(⍺) = {
F(⍺) ∪ G’(⍺).                                            ⍺ ∊ T ∩ Z ∩ M’,      
[F(⍺) ∪ G’(⍺)] ∪ [F(⍺) ∪ H’(⍺)].         ⍺ ∊ T ∩ Z ∩M,       

  

(F,T) λR[(G,Z)  
~
∪ (H,M)]=[(F,T)λR(G,Z)] 

~
∩ [(F,T) λR (H,M)].  

[(F,T) 
~
∪ (G,Z)] λR(H,M)= [(F,T) λR(H,M)] 

~
∪ [(G,Z) λR (H,M)].  

R(⍺) = {
F(⍺).                     ⍺ ∊ T − Z,
F(⍺)∪ G(⍺).        ⍺ ∊ T ∩ Z,

  

N(⍺) = {
F(⍺) ∪H’(⍺).                           ⍺ ∊ (T − Z)∩M = T ∩ Z’ ∩ M,             
[F(⍺) ∪ G(⍺)]∪ H’(⍺).           ⍺ ∊ (T ∩ Z)∩M = T ∩ Z ∩M,               

    

L(⍺) = {
K(⍺).                       ⍺ ∊ (T ∩M)− (Z ∩M) = (T − Z)∩M,   
K(⍺)∪ S(⍺).          ⍺ ∊ (T ∩M)∩ (Z ∩M) = (T ∩ Z)∩M,   
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Thus, (N,T∩M)=(L,T∩M). Here, if T∩M=∅, then (N,T∩M)=(L,T∩M)=∅∅, and if Z∩M=∅, then 

N(⍺)=L(⍺)=F(⍺)∪H’(⍺). Thus, there is no extra condition as T∩M≠ ∅ and/or Z∩M≠ ∅  for satisfying Theorem 

5. 

3.2. 

Extended Lambda Operation and its Properties 

Definition 12. let (F. T) and (G. Z) be soft sets over U. The extended lambda operation of (F. T) and (G. Z)  is 

the soft set (H,C), denoted by (F,T) λε(G,Z)=(H,C), where C=T∪Z and for all ⍺∊C, 

From the definition, it is obvious that if T=∅, then (F,T)λε(G,Z)=(G,Z), if Z=∅, then (F,T)λε(G,Z)=(F,T), if 

T=Z=∅, then (F,T)λε(G,Z)= ∅∅. 

Example 2. let 𝐸 = {𝑒1. 𝑒2. 𝑒3. 𝑒4}be the parameter set, T = {e1. e3} and Z = {e2. e3. e4} be subsets of E, U =

{h1. h2. h3. h4. h5} be the universal set, (F. T) and (G. Z) be the soft sets over U as (F. T) = {(e1,. {h2. h5), 

(e3. {h1. h2. h5})}, (G. Z) = {( e2. {h1. h4. h5}), {(𝑒3. {ℎ2. ℎ3. h4}), (e4. h3,h5})}. Here, let (F,T) λε(G,Z)=(H,T∪Z), 

where for all ⍺∊T∪Z, 

Since T∪Z={e1,e2,e3,e4} and T-Z={e1}, Z-T={e2. e4}, T∩Z={e3}, thus, H(e1)=F(e1)={h2,h5}, 

H(e2)=G(e2)={h1,h4,h5}, H(e4)=G(e4)={h3,h5}, H(e3)=F(e3)∪G', (e3)={h1,h2,h5} ∪ {h1. h5}={h1. h2. h5}. 

Thus, 

Remark 1. In the set ST(U), where T is a fixed subset of E, restricted and extended lambda operations coincide 

with each other. That is, (F,T) λε(G,T)=(F,T) λR(G,T). 

Theorem 6 (Algebraic Properties of the Operation). Let (F,T), (G,T), (H,T) (G,Z), (H,M), (K,V) and (L,V) 

be soft sets over U. Then, 

I. The set SE(U) and ST(U) are closed under λε.  

Proof: it is clear that λε is a binary operation in SE(U). That is,  

Namely, when (F. T) and (G. Z) are soft set over 𝑈, then so  (F,T) λε (G,Z). Similarly, ST(U) is closed under λε. 

That is, 

Namely, λε is a binary operation in ST(U). 

If T∩Z∩M=∅, then [(F,T) λε (G,Z)] λε (H,M) = (F,T) λε [(G,Z) λε (H,M)]. 

L(⍺) = {
F(⍺) ∪ H’(⍺)                                         ⍺ ∊ T ∩ Z’ ∩ M,     
[F(⍺) ∪ H’(⍺)] ∪ [G(⍺) ∪ H’(⍺)]      ⍺ ∊ T ∩ Z ∩ M,       

  

[(F,T)  
~
∩ (G,Z)] λR(H,M)= [(F,T) λR (H,M)] 

~
∩ [(G,Z) λR (H,M)].  

H(⍺) = {
F(⍺).                          ⍺ ∊ T − Z,
G(⍺).                          ⍺ ∊ Z − T,
F(⍺) ∪ G’(⍺).           ⍺ ∊ T ∩ Z,

        

H(⍺) = {
F(⍺).                      ⍺ ∊ T − Z,
G(⍺).                      ⍺ ∊ Z − T,
F(⍺) ∪ G’(⍺).        ⍺ ∊ T ∩ Z,

      

(F,T)λε(G,Z)={(e1,{h2,h5}), (e2,{h1,h4,h5}), (e3. {h1. h2. h5}), (e4,{ h3,h5})}.  

λε: SE(U)x SE(U)→ SE(U).                               

((F,T), (G,Z)) → (F,T)λε(G,Z)=(H,T∪Z).  

λε: ST(U)x ST(U)→ ST(U).   

((F,T), (G,T)) → (F, T)λε(G, T)=(K,T∪ T)=(K,T).  
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  Proof: first, consider the LHS. Let (F,T)λε(G,Z)=(S,T∪Z), where for all ⍺∊T∪Z,  

Let (S,T∪Z) λε(H,M) =(N,(T∪Z)∪M)), where for all ⍺∊(T∪Z)∪M, 

Thus,   

Now consider the RHS. Let (G,Z) λε(H,M)=(R,Z∪M), where for all ⍺∊Z∪M, 

Let (F,T) λε(R,Z∪M)=(L,(T∪(Z∪M)), where for all ⍺∊T∪Z∪M, 

Hence, 

It is observed that (N,(T∪Z)∪M)=(L,T∪(Z∪M)), where T∩Z∩M=∅. That is, in  SE(U), λε is associative under 

certain conditions. 

Proof: the proof follows from Remark 1 and Theorem 1. That is, in ST(U), where T is a fixed subset of E, λε is 

not associative. 

Proof: let (F,T) λε(G,Z)=(H,T∪Z), where for all ⍺∊T∪Z, 

S(⍺) =  {

F(⍺).                       ⍺ ∊ T − Z,
G(⍺).                       ⍺ ∊ Z − T,
F(⍺) ∪ G’(⍺).        ⍺ ∊ T ∩ Z,

      

N(⍺) =  {
S(⍺).                           ⍺ ∊ (T ∪ Z) − M,          
H(⍺).                           ⍺ ∊ M − (T ∪ M),         
S(⍺) ∪ H’(⍺).             ⍺ ∊ (T ∪ Z) ∩ M.           

      

M(⍺) =

{
 
 
 

 
 
 
F(⍺).                                              ⍺ ∊ (T − Z) −M = T ∩ Z’ ∩ M’,      

G(⍺).                                              ⍺ ∊ (Z − T) − M = T’ ∩ Z ∩ M’,     
F(⍺) ∪ G’(⍺).                               ⍺ ∊ (T ∩ Z) − M = T ∩ Z ∩M’,      
H(⍺).                                              ⍺ ∊ M − (T ∪ Z) = T’ ∩ Z’ ∩ M,    
F(⍺) ∪ H’(⍺).                               ⍺ ∊ (T − Z) ∩ M = T ∩ Z’ ∩ M,     
G(⍺) ∪ H’(⍺).                               ⍺ ∊ (Z − T) ∩ M = T’ ∩ Z ∩ M,     
[F(⍺) ∪ G’(⍺)] ∪ H’(⍺).             ⍺ ∊ (T ∩ Z) ∩ M = T ∩ Z ∩M,      

    

R(⍺) = {
G(⍺).                        ⍺ ∊ Z − M,
H(⍺).                        ⍺ ∊ M − Z,
G(⍺) ∪ H’(⍺).         ⍺ ∊ Z ∩ M,

      

L(⍺) = {

F(⍺).                           ⍺ ∊ T − (Z ∪ M),
R(⍺).                           ⍺ ∊ (Z ∪ M) − T

F(⍺) ∪ R’(⍺).            ⍺ ∊ T ∩ (Z ∪ M),

,     

N(⍺) =

{
 
 
 

 
 
 
F(⍺).                                      ⍺ ∊ T − (Z ∪M) = T∩ Z’ ∩M’,    
G(⍺).                                     ⍺ ∊ (Z −M)−T = T’ ∩ Z ∩M’,   
H(⍺).                                     ⍺ ∊ (M− Z)−T = T’ ∩ Z’ ∩M,   

 

G(⍺) ∪H’(⍺).                       ⍺ ∊ (Z ∩M)−T = T’ ∩ Z ∩M,      
F(⍺)∪ G’(⍺).                       ⍺ ∊ T ∩ (Z −M) = T∩ Z ∩M’,     
F(⍺)∪H’(⍺).                       ⍺ ∊ T ∩ (M− Z) = T∩ Z’ ∩M,     
F(⍺)∪ [G’(⍺)∩H(⍺)].      ⍺ ∊ T ∩ (Z ∩M) = T∩ Z ∩M,      

      

[(F,T) λε (G,T)] λε (H,T) ≠ (F,T) λε [(G,T) λ (H,T)].      

(F,T)λε(G,Z)≠(G,Z) λε(F,T).  

H(⍺) = {
F(⍺).                          ⍺ ∊ T − Z,
G(⍺).                          ⍺ ∊ Z − T,
F(⍺) ∪ G’(⍺).           ⍺ ∊ T ∩ Z,
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  Let (G,Z) λε(F,T)=(S,Z∪T), where for all ⍺∊Z∪T, 

Thus, (F. T) λε (G. Z) ≠ (G. Z) λε(F. T). If Z∩T=∅, then (F. T)λε (G. Z) = (G. Z) λε (F. T). Moreover, it is obvious 

that (F. T) λε (G. T) ≠ (G. T)λε(F. T). That is, in  SE(U) and  ST(U), λε is not commutative. 

Proof: the proof follows from Remark 1 and Theorem 1. That is, in 𝑆𝐸(𝑈), λε is not idempotent. 

Proof: the proof follows from Remark 1and Theorem 1.   

Proof: the proof follows from Remark 1 and Theorem 1.   

Proof: let ∅∅=(S,∅) and (F,T) λε(S, ∅)=(H,T∪∅), where for all ⍺∊T∪∅=T, 

Thus, for all ⍺∊T, H(⍺)=F(⍺), (H,T)=(F,T).  

Proof: Let ∅∅ =(S,∅) and (S,∅) λε(F,T)=(H, ∅∪T), where for all ⍺∊∅∪T=T, 

Thus, for all ⍺∊T, H(⍺)=F(⍺), (H,T)=(F,T). 

By Theorem 6, we can conclude that in SE(U), the identity element of λε is the soft set ∅∅. In classical set theory, 

it is well-known that A∪B=∅⟺A=∅ and B=∅. Thus, it is evident that in SE(U), we can not find (G. K) ∈ SE(U) 

such that (F. T) λε(G. K)=(G,K) λε(F. T) = ∅∅, as this situation requires that T ∪K=∅ and thus,  T=∅ and K=∅.  

Since in SE(U), the only soft set with an empty parameter set is ∅∅, it follows that only the identity element ∅∅ 

has an inverse and its inverse is its own, as usual. Thus, in SE(U), any other element except ∅∅  does not have 

an inverse for the operation λε. 

Corollary 1. Let (F,T), (G,Z), and (H,M) be the elements of SE(U). By Theorem 6, (SE(U), λε) is a 

noncommutative monoid whose identity is ∅∅ where T∩Z∩M=∅. Since (SA(U), λε) does not have associative 

property, where A is a fixed subset of E; this algebraic structure can not be a semigroup. 

Proof: the proof follows from Remark 1 and Theorem 1. That is, UT is the right identity element for λε in ST(U). 

S(⍺) = {

G(⍺).                        ⍺ ∊ Z − T,
F(⍺).                        ⍺ ∊ T − Z,
G(⍺) ∪ F’(⍺).         ⍺ ∊ Z ∩ T,

      

(F,T) λε(F,T)= UT.      

(F,T) λε ∅T=UT.  

∅Tλε(F,T)=(F, T)r.  

(F,T)λε ∅∅=(F,T).  

H(⍺) = {

F(⍺).                          ⍺ ∊ T − ∅ = T,
S(⍺).                          ⍺ ∊ ∅ − T = ∅,
F(⍺)∪ S’(⍺).               ⍺ ∊ T ∩ ∅ = ∅,

       

∅∅ λε (F,T)=(F,T).       

H(⍺) = {
S(⍺).                      ⍺ ∊ ∅ − T = ∅,
F(⍺).                      ⍺ ∊ T − ∅ = T,
S(⍺) ∪ F’(⍺).        ⍺ ∊ ∅ ∩ T = ∅,

      

(F,T) λε UT=(F,T).  

UTλε (F,T)=  UT,  
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  Proof: the proof follows from Remark 1 and Theorem 1. That is, UT is the left absorbing element for λε  in 

ST(U). 

Proof: let UE=(T,E), where for all ⍺∊E, T(⍺)=U. Assume that (F,T) λε(T, E)=(H,T∪E), where for all ⍺∊T∪E=E, 

Thus, 

Hence, for all ⍺ ∊ E, H(⍺) = U, and so (H. E) = UE. That is, UE  is the left absorbing element for λε in SE(U). 

Here note that UEλε(F,T) ≠ UE, that is UE is not the right absorbing element for λε in SE(U). In deed, let 

UE=(T,E) and (T. E) λε(F,T)= (K,T∪E), where for all ⍺∊T∪E=E,  

Thus, 

Hence, (K,E) ≠ UE.   

Proof: the proof follows from Remark 1 and Theorem 1. That is,  every relative complement of the soft set is 

its own right identity element for the operation λε in SE(U). 

Proof: the proof follows from Remark 1 and Theorem 1. That is, every relative complement of the soft set is 

its own left absorbing element for the operation λε in SE(U). 

Proof: let (F,T) λε(G,Z) =(H,T∪Z), where for all ⍺∊T∪Z, 

Let (H. T ∪ Z)r = (K. T ∪ Z), for all ⍺ ∊ T ∪ Z, 

UEλε (F,T) = UE.   

K(⍺) = {
T(⍺).                         ⍺ ∊ E − T,
F(⍺).                         ⍺ ∊ T − E,
T(⍺) ∪ F’(⍺).           ⍺ ∊ E ∩ T ,

      

K(⍺) = {
U.                ⍺ ∊ E − T =  T′,   
F(⍺).          ⍺ ∊ T − E = ∅,     
U.                ⍺ ∊ T ∩ E = T,     

      

    H(⍺) = {
F(⍺).                       ⍺ ∊ T − E,
T(⍺).                       ⍺ ∊ E − T,
F(⍺) ∪ T’(⍺).        ⍺ ∊ T ∩ E,

     

             H(⍺) = {
F(⍺).             ⍺ ∊ T − E = ∅,   
U.                   ⍺ ∊ E − T = T’,   
F(⍺).             ⍺ ∊ T ∩ E = T,    

     

(F,T)λε (F,T)r=(F,T).     

(F,T)r λε(F,T)=(F,T)r.  

[(F,T) λε(G,Z)]r=(F,T) 
∗
~
γ
 (G,Z).  

    H(⍺) = {
F(⍺).                    ⍺ ∊ T − Z,
G(⍺).                    ⍺ ∊ Z − T,
F(⍺) ∪ G’(⍺).     ⍺ ∊ T ∩ Z,

               

K(⍺) = {

F’(⍺).                 ⍺ ∊ T − Z,
G’(⍺).                 ⍺ ∊ Z − T,
F’(⍺) ∩ G(⍺).   ⍺ ∊ T ∩ Z,
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Thus, (K, T ∪ Z) =  (F, T) 

∗
~
γ
 (G, Z),  

Proof: the proof follows from Remark 1 and Theorem 1.   

∅T ⊆̃ (F. T)λε(G. Z), ∅Z ⊆̃ (F. T) λε (G. Z), ∅Z ⊆̃ (G. Z) λε (F. T), ∅T ⊆̃ (G,Z) λε (F,T). Moreover, (F,T) λε (G,Z) 

⊆̃ UT∪Z and (G,Z) λε(F,T) ⊆̃  UZ∪T. 

Proof: the proof follows from Remark 1 and Theorem 1.   

If (F,T) ⊆̃ (G, T), then (H,T) λε(G,T) ⊆̃(H,T) λε(F,T) and (F,T) λε(H,Z) ⊆̃(G,T) λε (H,Z).  

Proof: if (F,T) ⊆̃ (G, T), then (H,T) λε(G,T) ⊆̃(H,T) λε(F,T) is obvious from Remark 1 and Theorem 1. Let (F,T) 

⊆̃ (G, T), where for all ⍺∊T, F(⍺)⊆G(⍺). Let (F,T)λε(H,Z)=(Y,T∪Z), where for all ⍺∊T∪Z, 

Let (G,T) λε (H,Z)=(W,T∪Z), where for all ⍺∊T∪Z, 

If ⍺∊T-Z, then Y(⍺)= H(⍺)  and W(⍺)=G(⍺), thus Y(⍺)= F(⍺) ⊆ G(⍺) =W(⍺). If ⍺∊T-Z, then Y(⍺)= H(⍺) and 

W(⍺)=H(⍺), thus Y(⍺)= H(⍺) ⊆H(⍺)=W(⍺). If ⍺∊T∩Z, then Y(⍺)=F(⍺)∪H’(⍺) and W(⍺)=G(⍺)∪H’(⍺), thus 

Y(⍺)= F(⍺) ∪ H′(⍺) ⊆ G(⍺)∪H’(⍺)=W(⍺). Thus, for all ⍺∊T∪Z, Y(⍺)⊆W(⍺). Hence, 

If (F,T)λε(H,Z)⊆̃(G,T)λε(H,Z), then (F,T) ⊆̃ (G, T) needs not be true. Similarly, if (H,T) λε(G,T) ⊆̃(H,T) λε(F,T), 

then (F,T) ⊆̃ (G, T) needs not be true. 

Proof:  let E={e1,e2,e3,e4,e5. e6} be the parameter set, T={e1,e3} and Z={e1,e3. e5} be the subsets of E,  

U={h1,h2. h3,h4. h5} be the universal set, and (F,T), (G,T) and (H,Z) be soft sets over U such that 

(F,T)={(e1.{h2. h5}), (e3,{h1,h2,h5})}, (G,T)={(e1,.{h2}), (e3,{h1,h2})}, (H,Z)={(e1,∅),(e3,∅),(e5,{h2})}. Let 

(F,T)λε(H,Z)=(L,T∪ Z), where for all ⍺ ∊ T ∪ Z={e1. e3. e5}, L(e1)=H(e1)∪F' (e1)=U, L(e3)=H(e3)∪F' (e3)=U 

and L(e5)=H(e5)={h2}. Thus, (F,T)λε(H,Z)={(e1,U), (e3,U), (e5, {h2})}. Now let (G,T)λR(H,Z)=(W,T ∪ Z), 

where for all ⍺ ∊ T ∪ Z={e1. e3. e5}, W(e1)=H(e1)∪G'(e1)=U, W(e3)=H(e3)∪G' (e3)=U and W(e5)=H(e5)= 

{h2}. Hence, (G,T) λε (H,Z) ={(e1, U), (e3,U), (e5, {h2})}.  

Thus, it is observed that (F,T) λε(H,Z)⊆̃(G,T) λε(H,Z), but (F,T) is not a soft subset of (G. T). Similarly, if 

(H,T) λε (G,T) ⊆̃ (H,T)λε(F,T), then (F,T) ⊆̃ (G. T) needs not be true can be shown by choosing 

(H,T)={( e1,U),(e3,U)} in the above example.  

If (F,T) ⊆̃ (G. T) and (K,T) ⊆̃ (L. T), then (F,T) λε (L,T) ⊆̃ (G,T) λε (K,T) and (K,T) λε (G,T) ⊆̃ (L,T) λε (F,T). 

Proof: the proof follows from Remark 1 and Theorem 1.   

Theorem 7. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, extended lambda operation distributes 

over other soft set operations as follows: 

(F,T) λε(G, T)= ∅T ⇔(F, T) = ∅T  and  (G, T) = U,  

(F,T) ⊆̃(F,T) λε (G,T) and (G,T)r  ⊆̃ (F, T)λε (G, T),  

     Y(⍺) = {
F(⍺).                          ⍺ ∊ T − Z,
H(⍺).                          ⍺ ∊ Z − T,
F(⍺) ∪ H’(⍺).           ⍺ ∊ T ∩ Z,

               

      W(⍺) = {

G(⍺).                         ⍺ ∊ T − Z,
H(⍺).                         ⍺ ∊ Z − T,
G(⍺) ∪ H’(⍺).          ⍺ ∊ T ∩ Z,

              

(F,T) λε(H,Z) ⊆̃(G,T) λε(H,Z).  
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  Theorem 8. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, extended lambda operation distributes 

over restricted soft set operations as follows: 

I. LHS distributions 

If T∩(Z∆M)=∅, then (F,T) λε [(G,Z)∩R(H,M)]=[(F,T) λε(G,Z)] ∩R [(F,T) λε (H,M)]. 

Proof: consider first the LHS. Let (G, Z) ∩R(H,M)=(R,Z∩M), where for all ⍺∊Z∩M, R(⍺)=G(⍺)∩H(⍺). Let  

(F,T) λε(R,Z∩M)=(L,T∪(Z∩M)), where for all ⍺∊T∪(Z∩M), 

thus, 

Now consider the RHS, i.e. [(F,T) λε(G,Z)]∩R[(F,T) λε (H,M)]. (F,T)λε(G, Z)=(M,T∪Z), where for all ⍺∊T∪Z, 

Let (F,T) λε (H,M)=(K,T∪M), where for all ⍺∊T∪M, 

Assume that (M,T∪Z)∩R(K,T∪M)=(W,(T∪Z)∩(T∪M)), where for all ⍺∊(T∪Z)∩(T∪M), W(⍺)=T(⍺)∩K(⍺). 

Thus, 

Hence, 

When considering the T-(Z∩M) in the function N, since T-(Z∩M)=T-(Z∩M)', if an element is in the 

complement of (Z∩M), then it is either in Z-M, or M-Z, or (Z∪M)'. Thus, if ⍺∈ T-(Z∩M), then ⍺∈ T∩Z∩M’ or 

⍺∈ T∩Z’∩M or ⍺∈ T∩Z’∩M’. Therefore, L=W under the condition T∩Z'∩M= T∩Z∩M’=∅, that is T∩(Z∆M)=∅. 

Here, if Z∩M=∅ and T∩(Z∆M)=∅. Then N(⍺)=W(⍺)=F(⍺), thus N is equal to W again. Similarly, if 

(T∪Z)∩(T∪M)=T∪(Z∩M)=∅, that is T=∅ and Z∩M=∅, then (N,T∪(Z∩M))=(W,(T∪Z)∩(T∪M))=∅∅. That is, 

L(⍺) = {

F(⍺).                     ⍺ ∊ T − (Z ∩ M),
R(⍺).                     ⍺ ∊ (Z ∩ M) − T,
F(⍺) ∪ R’(⍺).      ⍺ ∊ T ∩ (Z ∩ M),

     

L(⍺) = {
F(⍺).                                        ⍺ ∊ T − (Z ∩ M),     
G(⍺) ∩ H(⍺).                          ⍺ ∊ (Z ∩ M) − T,     
F(⍺) ∪ [G’(⍺) ∪ H’(⍺)].        ⍺ ∊ T ∩ (Z ∩ M),    

     

M(⍺) = {
F(⍺).                       ⍺ ∊ T − Z,
G(⍺).                      ⍺ ∊ Z − T,
F(⍺) ∪ G′(⍺).       ⍺ ∊ T ∩ Z,

     

K(⍺) = {

F(⍺).                         ⍺ ∊ T − M,
H(⍺).                        ⍺ ∊ M − T,
F(⍺) ∪ H’(⍺).          ⍺ ∊ T ∩ M,

      

W(⍺) =

{
 
 
 
 

 
 
 
 
F(⍺) ∩ F(⍺).                                          ⍺ ∊ (T − Z) ∩ (T −M) = T ∩ Z’ ∩ M’,         
F(⍺) ∩ H(⍺).                                          ⍺ ∊ (T − Z) ∩ (M− T) = ∅,                           
F(⍺) ∩ [F(⍺) ∪ H’(⍺)].                         ⍺ ∊ (T − Z) ∩ (T ∩ M) =  T ∩ Z’ ∩ M,         
G(⍺) ∩ F(⍺).                                           ⍺ ∊ (Z − T) ∩ (T −M) = ∅,                          
G(⍺) ∩ H(⍺).                                          ⍺ ∊ (Z − T) ∩ (M− T) = T’ ∩ Z ∩ M,         

G(⍺) ∩ [F(⍺) ∪ H’(⍺)].                         ⍺ ∊ (Z − T) ∩ (T ∩ M) =  ∅,                         
[F(⍺) ∪ G’(⍺)] ∩ F(⍺).                          ⍺ ∊ (T ∩ Z) ∩ (T −M) = T ∩ Z ∩ M’,         
 [F(⍺) ∪ G’(⍺)] ∩ H(⍺).                         ⍺ ∊ (T ∩ Z) ∩ (M− T) =  ∅,                          
[F(⍺) ∪ G’(⍺)] ∩ [F(⍺) ∪ H’(⍺)].        ⍺ ∊ (T ∩ Z) ∩ (T ∩ M) = T ∩ Z ∩ M,          

      

W(⍺) =

{
 
 

 
 
F(⍺).                                        ⍺ ∊ T ∩ Z’ ∩ M’,   
F(⍺).                                         ⍺ ∊ T ∩ Z’ ∩ M,   
G(⍺) ∩ H(⍺).                          ⍺ ∊ T’ ∩ Z ∩ M,   
F(⍺).                                         ⍺ ∊ T ∩ Z ∩ M’,   
F’(⍺) ∪ [G’(⍺) ∩ H’(⍺)].      ⍺ ∊ T ∩ Z ∩ M,    
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  in the theorem, there is no condition that the intersection of the parameter sets of the soft sets whose 

restricted difference will be calculated must be different from empty. 

If T∩(Z∆M)= T∩Z∩M=∅, then (F,T) λε [(G,Z)∪R(H,M)]= [(F,T) λε(G,Z)] ∪R [(F,T) λε(H,M)]. 

II. RHS Distributions 

If (T∆Z)∩M=∅, then [(F,T) ∩R(G,Z)]λε(H,M)= [(F,T)λε(H,M)] ∩R [(G,Z) λε (H,M)]. 

Proof: consider first the LHS. Let (F,T)∩R(G,Z)=(R,T∩Z, where for all ⍺∊T∩Z, R(⍺)=F(⍺)∩G(⍺). Let 

(R,T∩Z) λε(H,M)=(L,(T∩Z)∪M), where for all ⍺∊(T∩Z)∪M, 

Thus, 

Now consider the RHS, i.e. [(F,T)λε(H,M)] ∩R [(G,Z) λε (H,M)]. Let (F,T)λε(H,M)=(S,T∪M), where for all 

⍺∊T∪M, 

Let (G,Z) λε (H,M)=(K,Z∪M), where for all ⍺∊Z∪M, 

Assume that (S,T∪Z)∩R(K,Z∪M)=(W,(T∪Z)∩(Z∪M)), where for all ⍺∊(T∪Z)∩(Z∪M), where for 

W(⍺)=S(⍺)∩K(⍺). Thus, 

Therefore, 

L(⍺) = {
R(⍺).                       ⍺ ∊ (T ∩ Z) − M,
H(⍺).                       ⍺ ∊ M − (T ∩ Z),
R(⍺) ∪ H’(⍺).       ⍺ ∊ (T ∩ Z) ∩ M,

    

L(⍺) = {
F(⍺) ∩ G(⍺).                        ⍺ ∊ (T ∩ Z) − M,   
H(⍺).                                      ⍺ ∊ M − (T ∩ Z),   
[F(⍺) ∩ G(⍺)] ∪ H’(⍺).      ⍺ ∊ (T ∩ Z) ∩ M,   

      

S(⍺) = {

F(⍺).                         ⍺ ∊ T − M,
H(⍺).                         ⍺ ∊ M − T,
F(⍺) ∪ H’(⍺).          ⍺ ∊ T ∩M,

      

K(⍺) = {

G(⍺).                        ⍺ ∊ Z − M,
H(⍺).                        ⍺ ∊ M − Z,
G(⍺) ∪ H’(⍺).         ⍺ ∊ Z ∩ M,

     

W(⍺) =

{
 
 
 
 

 
 
 
 
F(⍺) ∩ G(⍺).                                          ⍺ ∊ (T − M) ∩ (Z − M) = T ∩ Z ∩ M’,      
F(⍺) ∩ H(⍺).                                          ⍺ ∊ (T − M) ∩ (M − Z) = ∅,                       
F(⍺) ∩ [G(⍺) ∪ H’(⍺)].                        ⍺ ∊ (T − M) ∩ (Z ∩ M) = ∅,                       
H(⍺) ∩ G(⍺).                                          ⍺ ∊ (M − T) ∩ (Z − M) = ∅,                      
H(⍺) ∩ H(⍺).                                          ⍺ ∊ (M − T) ∩ (M − Z) = T’ ∩ Z’ ∩ M,    
H(⍺) ∩ [G(⍺) ∪ H’(⍺)].                       ⍺ ∊ (M − T) ∩ (Z ∩ M) = T’ ∩ Z ∩M,     
[F(⍺) ∪ H’(⍺)] ∩ G(⍺).                        ⍺ ∊ (T ∩ M) ∩ (Z − M) = ∅,                      
[F(⍺) ∪ H’(⍺)] ∩ H(⍺).                        ⍺ ∊ (T ∩ M) ∩ (M − Z) = T ∩ Z’ ∩ M,     
[F(⍺) ∪ H’(⍺)] ∩ [G(⍺) ∪ H’(⍺)].      ⍺ ∊ (T ∩ M) ∩ (Z ∩ M) = T ∩ Z ∩ M,      

       

W(⍺) =

{
 
 

 
 
F(⍺) ∩ G(⍺).                          ⍺ ∊ T ∩ Z ∩ M’,     
H(⍺).                                       ⍺ ∊ T′ ∩ Z′ ∩M,    
H(⍺) ∩ G(⍺).                         ⍺ ∊ T’ ∩ Z ∩ M,     
F(⍺) ∩ H(⍺).                         ⍺ ∊ T ∩ Z’ ∩ M,     
[F(⍺) ∩ G(⍺)] ∪ H’(⍺).        ⍺ ∊ T ∩ Z ∩ M,      
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  When considering M-(T∩Z) in the function L, since M-(T∩Z)=M∩(T∩Z)', if an element is in the complement 

of (T∩Z), then it is either in T-Z, or in  Z-T or in (T∪Z )'. Thus, if ⍺∈M-(T∩Z), then either ⍺∈M∩T∩Z' or ⍺∈ 

M∩Z∩T' or ⍺∈ M∩T'∩Z'. Therefore, L=W under the condition T'∩Z∩M=T∩Z'∩M=∅. 

Here, if T∩Z=∅, then L(⍺)=W(⍺)=H(⍺), thus N is equal to W again. Similarly, if 

(T∪M)∩(Z∪M)=(T∩Z)∪M=∅, that is T∩Z=∅ and M=∅, then (L,(T∩Z)∪M)=(W,(T∪M)∩(Z∪M))=∅∅. That 

is, in the theorem, there is no condition that the intersection of the parameter sets of the soft sets whose 

restricted difference will be calculated must be different from empty. 

If (T∆Z) ∩ M = ∅, then [(F. T) ∪R (G. Z)] λε(H.M) = [(F. T) λε(H.M)] ∪R [(G. Z) λε (H.M)]. 

Corollary 2. (SE(U).∩R. λε) is an additive idempotent noncommutative (right) nearsemiring with unity and 

zero but without zero-symmetric properties and under certain conditions. 

Proof: Ali et al. [6] showed that (SE(U).∩R)  is a commutative, idempotent monoid with identity UE, that is, a 

bounded semilattice (hence a semigroup). By Corollary 1,  (SE(U). λε)  is a noncommutative monoid (hence 

a semigroup) whose identity is ∅∅ under the condition T ∩ Z ∩ M = ∅, where (F. T), (G. Z) and (H.M) are soft 

sets over U. Moreover, by Theorem 8, λε distributes over ∩R from LHS under T ∩ (Z∆M) = ∅ and by 

Theorem 6, UEλε(F. A) = UE that is, UE is left absorbing element for the operation λε in SE(U). Thus, 

(SE(U).∩R. λε) is an additive idempotent noncommutative (right) nearsemiring with unity and zero under the 

condition T ∩ Z ∩ M = T ∩ (Z∆M) = ∅. Moreover, since (F. A)λεUE ≠ UE, (SE(U).∩R. λε) is a (right) 

nearsemiring without zero-symmetric property and under certain conditions. 

Corollary 3. (SE(U),∩R,λε) is an additive idempotent noncommutative semiring without zero but with unity 

under certain conditions. 

Proof: Ali et al. [6] showed that (SE(U),∩R)  is a commutative, idempotent monoid with identity UE, that is, a 

bounded semilattice (hence a semigroup). By Corollary 1,  (SE(U), λε)  is a noncommutative monoid (hence a 

semigroup) whose identity is ∅∅ under the condition T∩Z∩M=∅, where (F,T), (G,Z) and (H,M) are soft sets 

over U. Moreover, by Theorem 8, λε distributes over ∩R from LHS under T∩(Z∆M)= T∩Z∩M=∅ and by Theorem 

8, λε distributes over ∩R form RHS under the condition (T∆Z)∩M=∅. Consequently, under the condition 

T∩Z∩M=(T∆Z)∩M=T∩(Z∆M)=∅, (SE(U),∩R,λε) is an additive idempotent noncommutative semiring without 

zero but with unity under certain conditions. 

Corollary 4. (SE(U),∪R,λε) is an additive idempotent noncommutative semiring without zero but with unity 

under certain conditions. 

Proof: Ali et al. [6] showed that (SE(U),∪R)  is a commutative, idempotent monoid with identity  ∅∅ , that is, 

a bounded semilattice (hence a semigroup). By Corollary 1,  (𝑆𝐸(𝑈). 𝜆𝜀)  is a noncommutative monoid (hence 

a semigroup) whose identity is ∅∅ under the condition T∩Z∩M=∅, where (F,T), (G,Z) and (H,M) are soft sets 

over U. Moreover, by Theorem 8, λε distributes over ∪R  from LHS under T∩(Z∆M)= T∩Z∩M=∅ and by Theorem 

8, λε distributes over ∪R form RHS under the condition (T∆Z)∩M=∅. Consequently, under the condition 

T∩Z∩M=T∩(Z∆M)=(T∆Z)∩M=∅, (SE(U),∪R,λε) is an additive idempotent noncommutative semiring without 

zero but with unity under certain conditions. 

Theorem 9. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, the extended lambda operation distributes 

over other extended soft set operations as follows: 

I. LHS distributions 

If T∩(Z∆M) = T∩Z∩M=∅, then (F,T) λε[(G,Z) ∩ε (H,M)]=[(F,T)λε(G,Z)] ∩ε[(F,T) λε (H,M)].   

Proof: first, consider the LHS. Let (G,Z) ∩ε(H,M)=(R,Z∪M), where for all ⍺∊Z∪M, 

M(⍺) = {
G(⍺).                    ⍺ ∊ Z − M,
H(⍺).                    ⍺ ∊ M − Z,
G(⍺) ∩ H(⍺).      ⍺ ∊ Z ∩ M,
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  Thus, 

Now consider the RHS i.e. [(F,T)𝜆𝜀(G,Z)] ∩𝜀[(F,T) λε (H,M. Let  (F,T) λε (G,Z)=(K,T∪Z) where for all ⍺∊T∪Z, 

Let (F,T) λε (H,M)=(S,T∪M), where for all ⍺∊T∪M, 

Let (K,T∪Z) ∩ε(S,T∪M)=(L,(T∪Z)∪(T∪M)), where for all ⍺∊(T∪Z)∪(T∪M), 

Thus, 

Hence, 

N(⍺) =

{
 
 
 

 
 
 
F(⍺).                                           ⍺ ∊ T − (Z ∪ M) = T ∩ Z’ ∩ M’,   
G(⍺).                                           ⍺ ∊ (Z − M) − T = T’ ∩ Z ∩ M’,   
H(⍺).                                          ⍺ ∊ (M − Z) − T = T’ ∩ Z’ ∩ M,   
G(⍺) ∩ H(⍺).                            ⍺ ∊ (Z ∩ M) − T = T’ ∩ Z ∩ M,    
F(⍺) ∪ G’(⍺).                            ⍺ ∊ T ∩ (Z − M) = T ∩ Z ∩ M’,    
F(⍺) ∪ H’(⍺).                            ⍺ ∊ T ∩ (M − Z) = T ∩ Z’ ∩ M,    
F(⍺) ∪ [G’(⍺) ∪ H’(⍺)].          ⍺ ∊ T ∩ (Z ∩ M) = T ∩ Z ∩ M,     

  

K(⍺) = {

F(⍺).                     ⍺ ∊ T − Z,
G(⍺).                     ⍺ ∊ Z − T,
F(⍺) ∪ G’(⍺).       ⍺ ∊ T ∩ Z,

     

S(⍺) = {
F(⍺).                     ⍺ ∊ T − M,
H(⍺).                     ⍺ ∊ M − T,
F(⍺) ∪ H’(⍺).       ⍺ ∊ T ∩ M,

      

L(⍺) = {

K(⍺).                    ⍺ ∊ (T ∪ Z) − (T ∪ M),       
S(⍺).                     ⍺ ∊ (T ∪ M) − (T ∪ Z),       
K(⍺) ∩ S(⍺).       ⍺ ∊ (T ∪ Z) ∩ (T ∪ M),       

     

L(⍺) = {
K(⍺).                      ⍺ ∊ (T ∪ Z) − (T ∪ M),
S(⍺).                       ⍺ ∊ (T ∪M) − (T ∪ Z),
K(⍺) ∩ S(⍺).         ⍺ ∊ (T ∪ Z) ∩ (T ∪ M),

      

L(⍺) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
F(⍺).                                                       ⍺ ∊ (T − Z) − (T ∪ M) = ∅,                        
G(⍺).                                                       ⍺ ∊ (Z − T) − (T ∪M) = T’ ∩ Z ∩ M’,      
F(⍺) ∪ G’(⍺).                                        ⍺ ∊ (T ∩ Z) − (T ∪ M) = ∅,                         
F(⍺).                                                        ⍺ ∊ (T − M) − (T ∪ Z) = ∅,                        
H(⍺).                                                       ⍺ ∊ (M − T) − (T ∪ Z) = T’ ∩ Z’ ∩ M,      
F(⍺) ∪ H’(⍺).                                        ⍺ ∊ (T ∩ M) − (T ∪ Z) = ∅,                        
F(⍺) ∩ F(⍺).                                          ⍺ ∊ (T − Z) ∩ (T −M) = T ∩ Z’ ∩ M’,     
F(⍺) ∩ H(⍺).                                         ⍺ ∊ (T − Z) ∩ (M − T) = ∅,                       
F(⍺) ∩ [F(⍺) ∪ H’(⍺)].                      ⍺ ∊ (T − Z) ∩ (T ∩ M) = T ∩ Z’ ∩ M,      

G(⍺) ∩ F(⍺).                                          ⍺ ∊ (Z − T) ∩ (T − M) = ∅,                       
G(⍺) ∩ H(⍺).                                          ⍺ ∊ (Z − T) ∩ (M − T) =  T’ ∩ Z ∩M,    
G(⍺) ∩ [F(⍺) ∪ H’(⍺)].                      ⍺ ∊ (Z − T) ∩ (T ∩ M) = ∅,                       
 [F(⍺) ∪ G’(⍺)] ∩ F(⍺).                        ⍺ ∊ (T ∩ Z) ∩ (T − M) = T ∩ Z ∩ M’,       
[F(⍺) ∪ G’(⍺)] ∩ H(⍺).                       ⍺ ∊ (T ∩ Z) ∩ (M − T) = ∅,                       
[F(⍺) ∪ G’(⍺)] ∩ [F(⍺) ∪ H’(⍺)].    ⍺ ∊ (T ∩ Z) ∩ (T ∩ M) = T ∩ Z ∩ M,       
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Hence, N=L, where T∩Z∩M’=T∩Z'∩M=T∩Z∩M=∅. It is obvious that the condition T∩Z∩M’=T∩Z'∩M=∅ 

=T∩Z∩M=∅ is equal to the condition T∩(Z∆M)=∅. 

If T∩Z∩M =∅,  then (F,T) λε[(G,Z) ∪ε (H,M)] = [(F,T)λε(G,Z)] ∪ε[(F,T) λε (H,M)] 

II. RHS distributions 

If (T∆Z)∩M=∅,  then [(F,T)∪ε(G,Z)] λε(H,M)= [(F,T) λε(H,M)] ∪ε[(G,Z) λε(H,M)]. 

Proof: first, consider the LHS. Let (F,T) ∪ε(G,Z)=(R,T∪Z), where for all ⍺∊T∪Z, 

Let (R,T∪Z) λε (H,M)=(N,(T∪Z)∪M), where for all ⍺∊(T∪Z)∪M, 

Thus, 

Now consider the RHS, i.e. [(F,T) λε(H,M)] ∪ε[(G,Z) λε(H,M)]. Let (F,T) λε(H,M)=(K,T∪Z), where for all 

⍺∊T∪M, 

Let (G,Z) λε (H,M)=(S,T∪M), where for all ⍺∊Z∪M, 

Assume that (K,T∪M) ∪ε(S,Z∪M)=(L,(T∪M)∪(Z∪M)), where for all ⍺∊(T∪M)∪(Z∪M), 

L(⍺) =

{
 
 
 

 
 
 
G(⍺).                                           ⍺ ∊ T’ ∩ Z ∩ M’,   

H(⍺).                                           ⍺ ∊ T’ ∩ Z’ ∩ M,   
F(⍺).                                            ⍺ ∊ T ∩ Z’ ∩ M’,   
F(⍺).                                            ⍺ ∊ T ∩ Z’ ∩ M,   
G(⍺) ∩ H(⍺).                             ⍺ ∊ T’ ∩ Z ∩ M,   
F(⍺).                                            ⍺ ∊ T ∩ Z ∩M’,   
F(⍺) ∪ [G’(⍺) ∩ H’(⍺)].          ⍺ ∊ T ∩ Z ∩ M,    

       

R(⍺) = {
F(⍺).                     ⍺ ∊ T − Z,
G(⍺).                     ⍺ ∊ Z − T,
F(⍺) ∪ G(⍺).        ⍺ ∊ T ∩ Z,

      

N(⍺) = {

R(⍺).                    ⍺ ∊ (T ∪ Z) − M,
H(⍺).                    ⍺ ∊ M − (T ∪ Z),
R(⍺) ∪ H’(⍺).     ⍺ ∊ (T ∪ Z) ∩ M,

     

N(⍺) =

{
 
 
 

 
 
 
F(⍺).                                        ⍺ ∊ (T − Z) −M = T ∩ Z’ ∩ M’,     

G(⍺).                                        ⍺ ∊ (Z − T) − M = T’ ∩ Z ∩ M’,     
F(⍺) ∪ G(⍺).                          ⍺ ∊ (T ∩ Z) − M = T ∩ Z ∩ M’,      
H(⍺).                                        ⍺ ∊ M − (T ∪ Z) = T’ ∩ Z’ ∩ M,     
F(⍺) ∪ H’(⍺).                         ⍺ ∊ (T − Z) ∩ M = T ∩ Z’ ∩ M,      
G(⍺) ∪ H’(⍺).                         ⍺ ∊ (Z − T) ∩ M = T’ ∩ Z ∩ M,     
[F(⍺) ∪ G(⍺)] ∪ H’(⍺).        ⍺ ∊ (T ∩ Z) ∩ M = T ∩ Z ∩ M,       

      

K(⍺)  = {
F(⍺).                       ⍺ ∊ T −M,
H(⍺).                      ⍺ ∊ M − T,
F(⍺) ∪ H’(⍺).       ⍺ ∊ T ∩M,

     

S(⍺)  = {
G(⍺).                      ⍺ ∊ Z − M,
H(⍺).                      ⍺ ∊ M − Z,
G(⍺) ∪ H’(⍺).       ⍺ ∊ Z ∩M,
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Thus, 

Hence, 

Therefore, N=L, where T’∩Z∩M=T∩Z’∩M=∅. It is obvious that the condition T'∩Z∩M=∅=T∩Z'∩M=∅ is 

equal to the condition (T∆Z)∩M=∅. 

If (T∆Z)∩M=∅, then [(F,T)∩ε(G,Z)]λε(H,M)=[(F,T)λε(H,M)] ∩ε [(G,Z) λε (H,M)].  

Corollary 5. (SE(U),∪ε,λε) is an additive idempotent noncommutative semiring without zero but with unity 

under certain conditions. 

Proof: Ali et al. [6] showed that (SE(U).∪ε)  is a commutative, idempotent monoid with identity ∅∅, that is, a 

bounded semilattice (hence a semigroup). By Corollary 1,  (SE(U), 𝜆ε)  is a noncommutative monoid (hence a 

semigroup) whose identity is ∅∅ under the condition T∩Z∩M=∅, where (F,T), (G,Z) and (H,M) are soft sets 

over U. Moreover, by Theorem 9, λε distributes over ∪ε from LHS under T∩Z∩M =∅, and by Theorem 9, λε 

distributes over ∪ε from RHS under the condition (T∆Z)∩M=∅. Consequently, under the condition 

T∩Z∩M=T∩(Z∆M)=∅, (SE(U), ∪ε. λε)  is an additive idempotent noncommutative semiring without zero but 

with unity under certain conditions. 

Corollary 7. (SE(U),∩ε,𝜆ε) is an additive idempotent noncommutative semiring without zero but with unity 

under certain conditions. 

Proof: Ali et al. [6] showed that (𝑆𝐸(𝑈).∩𝜀)  is a commutative, idempotent monoid with identity ∅∅, that is, a 

bounded semilattice (hence a semigroup). By Corollary 1,  (𝑆𝐸(𝑈). 𝜆𝜀)  is a noncommutative monoid (hence a 

semigroup) whose identity is ∅∅ under the condition 𝑇 ∩ 𝑍 ∩𝑀 = ∅, where (𝐹. 𝑇), (𝐺. 𝑍) and (𝐻,𝑀) are soft 

sets over U. Moreover, by Theorem 9, λε distributes over ∩ε from LHS under T∩(Z∆M)= T∩Z∩M=∅, and by 

L(⍺) = {

K(⍺).                        ⍺ ∊ (T ∪ M) − (Z ∪M),
S(⍺).                         ⍺ ∊ (Z ∪ M) − (T ∪M),
K(⍺) ∪ S(⍺).           ⍺ ∊ (T ∪M) ∩ (Z ∪ M),

      

L(⍺) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
F(⍺).                                                      ⍺ ∊ (T − M) − (Z ∪ M) = T ∩ Z’ ∩ M’,   
H(⍺).                                                     ⍺ ∊ (M − T) − (Z ∪ M) = ∅,                     
F(⍺) ∪ H’(⍺).                                      ⍺ ∊ (T ∩M) − (Z ∪ M) = ∅,                     
L(⍺) = G(⍺).                                       ⍺ ∊ (Z − M) − (T ∪M) = T’ ∩ Z ∩ M’,   
H(⍺).                                                      ⍺ ∊ (M − Z) − (T ∪ M) = ∅,                     
G(⍺) ∪ H’(⍺).                                       ⍺ ∊ (Z ∩ M) − (T ∪M) = ∅,                     
F(⍺) ∪ G(⍺).                                         ⍺ ∊ (T − M) ∩ (Z − M) = T ∩ Z ∩ M’,   
F(⍺) ∪ H(⍺).                                         ⍺ ∊ (T − M) ∩ (M − Z) = ∅,                    
F(⍺) ∪ [G(⍺) ∪ H’(⍺)].                       ⍺ ∊ (T − M) ∩ (Z ∩ M) = ∅,                    
H(⍺) ∪ G(⍺).                                         ⍺ ∊ (M − T) ∩ (Z − M) = ∅,                    
H(⍺) ∪ H(⍺).                                        ⍺ ∊ (M − T) ∩ (M − Z) =  T’ ∩ Z’ ∩ M,
H(⍺) ∪ [G(⍺) ∪ H’(⍺)].                      ⍺ ∊ (M − T) ∩ (Z ∩M) = T’ ∩ Z ∩ M,   
[F(⍺) ∪ H’(⍺)] ∪ G(⍺).                       ⍺ ∊ (T ∩ M) ∩ (Z − M) = ∅,                    
[F(⍺) ∪ H’(⍺)] ∪ H(⍺).                       ⍺ ∊ (T ∩ M) ∩ (M − Z) = T ∩ Z’ ∩ M,   
[F(⍺) ∪ H’(⍺)] ∪ [G(⍺) ∪ H’(⍺)].     ⍺ ∊ (T ∩ M) ∩ (Z ∩ M) = T ∩ Z ∩ M,    

      

L(⍺) =

{
  
 

  
 
F(⍺).                                   ⍺ ∊ T ∩ Z’ ∩ M’,   
G(⍺).                                   ⍺ ∊ T’ ∩ Z ∩ M’,   
F(⍺) ∪ G(⍺).                     ⍺ ∊ T ∩ Z ∩ M’,    
H(⍺).                                  ⍺ ∊ T’ ∩ Z’ ∩ M,   
U.                                         ⍺ ∊ T’ ∩ Z ∩ M,    
U.                                         ⍺ ∊ T ∩ Z’ ∩ M,    
F(⍺) ∪ G(⍺) ∪ H’(⍺).     ⍺ ∊ T ∩ Z ∩ M,     
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  Theorem 9, λε distributes over ∩ε from RHS under the condition (T∆Z)∩M=∅. Consequently, under the 

condition T∩Z∩M=T∩(Z∆M)=(T∆Z)∩M=∅ (SE(U),∩ε,𝜆ε) is an additive idempotent noncommutative 

semiring without zero but with unity under certain conditions. 

Theorem 10. Let (F,T), (G,Z), and (H,M) be soft sets over U. Then, extended lambda operation distributes 

over soft binary piecewise operations as follows: 

I. LHS Distributions 

Proof: first, consider the LHS. Let (G,Z) 
~
∩ (H,M)=(R,Z), where for all ⍺∊Z, 

(F,T) λε (R,Z)=(N,T∪Z), where for all ⍺∊T∪Z, 

Thus, 

Now consider the RHS, i.e. [(F,T)λε(G,Z)] 
~
∩[(F,T)λε(H,M)]. Let (F,T)λε(G,Z)=(K,T∪Z), where for all ⍺∊T∪Z, 

Let (F,T) λε (H,M)=(S,T∪M), where for all ⍺∊T∪M, 

Let (K,T∪Z) 
~
∩(S,T∪M)=(L,(T∪Z)∪(T∪M)), where for all ⍺∊(T∪Z)∪(T∪M), 

Thus, 

If T∩Z∩M’=T∩Z∩M=∅, then (F,T)λε[(G,Z) 
~
∩ (H,M)] = 

[(F,T)λε(G,Z)]
~
∩[(F,T) λε (H,M)]. 

 

R(⍺) = {
G(⍺).                  ⍺ ∊ Z −M,
G(⍺) ∩ H(⍺).    ⍺ ∊ Z ∩M,

  

N(⍺) = {
F(⍺).                         ⍺ ∊ T − Z,
R(⍺).                         ⍺ ∊ Z − T,
F(⍺) ∪ R’(⍺).          ⍺ ∊ T ∩ Z,

      

N(⍺) =

{
 
 

 
 
F(⍺).                                      ⍺ ∊ T − Z,                                             
G(⍺).                                      ⍺ ∊ (Z − M) − T = T’ ∩ Z ∩ M’,      
G(⍺) ∩ H(⍺).                       ⍺ ∊ (Z ∩ M) − T = T’ ∩ Z ∩ M,       
F(⍺) ∪ G’(⍺).                       ⍺ ∊ T ∩ (Z − M) = T ∩ Z ∩ M’,       
F(⍺) ∪ [G’(⍺) ∪ H’(⍺)].     ⍺ ∊ T ∩ (Z ∩ M) = T ∩ Z ∩ M.        

      

K(⍺) = {

F(⍺).                         ⍺ ∊ T − Z,
G(⍺).                         ⍺ ∊ Z − T,
F(⍺) ∪ G’(⍺),          ⍺ ∊ T ∩ Z,

      

S(⍺) = {
F(⍺).                    ⍺ ∊ T − M,
H(⍺).                    ⍺ ∊ M − T,
F(⍺) ∪ H’(⍺).     ⍺ ∊ T ∩M,

      

L(⍺)  = {
K(⍺).                        ⍺ ∊ (T ∪ Z) − (T ∪ M),
K(⍺) ∩ S(⍺).           ⍺ ∊ (T ∪ Z) ∩ (T ∪ M),
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Thus, 

When considering T-Z in the function N, since T-Z=T∩Z', if an element is in the complement of Z, it is 

either in M-Z, or  (M∪Z)'. Thus, if ⍺∈T-Z, then either ⍺∈T∩M∩Z' or  ⍺∈T∩M'∩Z', hence N=L where 

T∩Z∩M’=T∩Z∩M=∅.  

II. RHS Distributions 

Proof: first, consider the LHS of the equality. Let  (F,T) 
~
∪ (G,Z)=(R,T), where for all ⍺∊T, 

Let (R,T) λε (H,M) =(N,T∪M), where for all ⍺∊T∪M, 

Thus, 

Now consider the RHS, i.e. [(F,T) λε(H,M)] 
~
∪ [(G,Z) 

~
λ(H,M)]. Let (F,T) λε (H,M)=(K,T∪M), where for all 

⍺∊T∪M, 

L(⍺) =

{
 
 
 
 
 
 

 
 
 
 
 
 
F(⍺).                                                           ⍺ ∊ (T − Z) − (T ∪ M) = ∅,                      
G(⍺).                                                           ⍺ ∊ (Z − T) − (T ∪ M) = T’ ∩ Z ∩M’,    
F(⍺) ∪ G’(⍺).                                            ⍺ ∊ (T ∩ Z) − (T ∪M) = ∅,                      
F(⍺) ∩ F(⍺).                                             ⍺ ∊ (T − Z) ∩ (T − M) = T ∩ Z’ ∩ M’,    
F(⍺) ∩ H(⍺).                                             ⍺ ∊ (T − Z) ∩ (M − T) = ∅,                      
F(⍺) ∩ [F(⍺) ∪ H’(⍺)].                          ⍺ ∊ (T − Z) ∩ (T ∩ M) = T ∩ Z’ ∩ M,     
G(⍺) ∩ F(⍺).                                              ⍺ ∊ (Z − T) ∩ (T −M) = ∅,                      
G(⍺) ∩ H(⍺).                                             ⍺ ∊ (Z − T) ∩ (M − T) =  T’ ∩ Z ∩ M,   
G(⍺) ∩ [F(⍺) ∪ H’(⍺)].                          ⍺ ∊ (Z − T) ∩ (T ∩M) = ∅,                      
[F(⍺) ∪ G’(⍺)] ∩ F(⍺).                            ⍺ ∊ (T ∩ Z) ∩ (T −M) = T ∩ Z ∩ M,      
[F(⍺) ∪ G’(⍺)] ∩ H(⍺).                           ⍺ ∊ (T ∩ Z) ∩ (M − T) = ∅,                      
[F(⍺) ∪ G’(⍺)] ∩ [F(⍺) ∪ H’(⍺)].        ⍺ ∊ (T ∩ Z) ∩ (T ∩M) = T ∩ Z ∩M,      

      

L(⍺)=

{
 
 

 
 
G(⍺).                                         ⍺ ∊ T’ ∩ Z ∩ M’,   
F(⍺).                                          ⍺ ∊ T ∩ Z’ ∩ M’,   
F(⍺).                                          ⍺ ∊ T ∩ Z’ ∩ M,    
G(⍺) ∩ H(⍺).                           ⍺ ∊ T’ ∩ Z ∩ M,    

F(⍺).                                          ⍺ ∊ T ∩ Z ∩ M’,    
F(⍺) ∪ [G’(⍺) ∩ H’(⍺)].        ⍺ ∊ T ∩ Z ∩ M,     

  

If T∩Z∩M=∅, then (F,T) λε [(G,Z) 
~
∪ (H,M)] = [(F,T) λε (G,Z)] 

~
∪ [(F,M) λε (H,M)].     

If T’∩Z∩M= T∩Z∩M =∅, [(F,T)
~
∪ (G,Z)] λε (H,M) = [(F,T) λε(H,M)] 

~
∪ [(G,Z) 

~
λ(H,M)].  

R(⍺) = {
F(⍺).                    ⍺ ∊ T − Z,
F(⍺) ∪ G(⍺).      ⍺ ∊ T ∩ Z,

  

N(⍺) = {
R(⍺).                      ⍺ ∊ T − M,    
H(⍺).                      ⍺ ∊ M − T,    
R(⍺) ∪ H’(⍺).       ⍺ ∊ T ∩ M,     

     

N(⍺) =

{
 
 

 
 
F(⍺).                                        ⍺ ∊ (T − Z) − M = T ∩ Z’ ∩ M’,    
F(⍺) ∪ G(⍺).                          ⍺ ∊ (T ∩ Z) −M = T ∩ Z ∩ M’,     
H(⍺).                                        ⍺ ∊ M − T.                                           
F(⍺) ∪ H’(⍺).                         ⍺ ∊ (T − Z) ∩ M = T ∩ Z’ ∩ M,     
[F(⍺) ∪ G(⍺)] ∪ H’(⍺).        ⍺ ∊ (T ∩ Z) ∩ M = T ∩ Z ∩ M,      
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Let (G,Z) λε (H,M)=(S,T∪M), where for all ⍺∊Z∪M, 

Let (K,T∪M) 
~
∪ (S,Z∪M)=(L,(T∪M)∪(Z∪M)), where for all ⍺∊(T∪M)∪(Z∪M), 

Thus, 

Hence,   

When considering M-T in the function N, since M-T=M∩T', if an element is in the complement of  T, then it 

is either in Z-T or (Z∪T)'. Thus, if ⍺∈M-T, then ⍺∈ M∩Z∩T' or ⍺∈M∩Z'∩T'. Thus, N=L under T’∩Z∩M= 

T∩Z∩M =∅. 

Corollary 8. (SE(U),
~
∪,λε)  is an additive idempotent noncommutative semiring without zero but with unity 

under certain conditions. 

Proof: Yavuz [31] showed that (SE(U), 
~
∪)  is an idempotent, noncommutative semigroup (that is a band) 

under the condition T∩Z'∩M =∅, where (F,T), (G,Z) and (H,M) are soft sets. 

By Corollary 1,  (SE(U), λε)  is a noncommutative monoid (hence a semigroup) whose identity is ∅∅ under the 

condition T∩Z∩M=∅, where (F,T), (G,Z) and (H,M) are soft sets over U. Moreover, by Theorem 10, λε 

distributes over 
~
∪ from LHS under T∩Z∩M=∅, and by Theorem 10, λε distributes over 

~
∪  from RHS under the 

condition T'∩Z∩M= T∩Z∩M =∅. Consequently, under the condition T∩Z∩M=(T∆Z)∩M=∅, (SE(U),
~
∪, λε)  is 

an additive idempotent noncommutative semiring without zero but with unity under certain conditions. 

K(⍺)  = {

F(⍺).                     ⍺ ∊ T − M,
H(⍺).                     ⍺ ∊ M − T,
F(⍺) ∪ H’(⍺).      ⍺ ∊ T ∩ M,

      

S(⍺) = {
G(⍺).                     ⍺ ∊ Z − M,
H(⍺).                     ⍺ ∊ M − Z,
G(⍺) ∪ H’(⍺).      ⍺ ∊ Z ∩ M,

     

L(⍺) = {
K(⍺).                       ⍺ ∊ (T ∪M)− (Z ∪M),
K(⍺) ∪ S(⍺).          ⍺ ∊ (T ∪M)∩ (Z ∪M),

  

L(⍺) =

{
 
 
 
 

 
 
 
 
F(⍺).                                                              ⍺ ∊ (T − M) − Z = T ∩ Z’ ∩ M’,              
H(⍺).                                                             ⍺ ∊ (M − T) − Z = T’ ∩ Z’ ∩ M,              
F(⍺) ∪ H’(⍺).                                              ⍺ ∊ (T ∩M) − Z = T ∩ Z’ ∩ M,                
F(⍺) ∪ G(⍺).                                                ⍺ ∊ (T − M) ∩ (Z − M) = T ∩ Z ∩ M’,   
F(⍺) ∪ [G(⍺) ∪ H’(⍺)].                              ⍺ ∊ (T − M) ∩ (Z ∩ M) = ∅,                    
H(⍺) ∪ G(⍺).                                                ⍺ ∊ (M − T) ∩ (Z − M) = ∅,                    
H(⍺) ∪ [G(⍺) ∪ H’(⍺)].                             ⍺ ∊ (M − T) ∩ (Z ∩M) = T’ ∩ Z ∩ M,   
[F(⍺) ∪ H’(⍺)] ∪ G(⍺).                              ⍺ ∊ (T ∩ M) ∩ (Z − M) = ∅,                    
[F(⍺) ∪ H’(⍺)] ∪ [G(⍺) ∪ H’(⍺)].           ⍺ ∊ (T ∩ M) ∩ (Z ∩M) = T ∩ Z ∩ M,    

  

L(⍺) =    

{
 
 

 
 
F(⍺).                                           ⍺ ∊ T ∩ Z′ ∩M′,    
F(⍺) ∪ G(⍺).                             ⍺ ∊ T ∩ Z ∩ M’,      
H(⍺).                                           ⍺ ∊ T’ ∩ Z’ ∩ M,     
U.                                                 ⍺ ∊ T′ ∩ Z ∩M,     
F(⍺) ∪ H’(⍺).                            ⍺ ∊ T ∩ Z’ ∩ M,     
[F’(⍺) ∪ G’(⍺)] ∪ H(⍺).          ⍺ ∊ T ∩ Z ∩ M,       

  

If T’∩Z∩M=∅, then [(F,T)
~
∩ (G,Z)] λε (H,M) = [(F,T) λε(H,M)] 

~
∩ [(G,Z) 

~
λ  (H,M)].  
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  Corollary 9. (SE(U), 
~
∩, λε)  is an additive idempotent noncommutative semiring without zero but with unity 

under certain conditions. 

Proof: Yavuz [31] showed that (SE(U), 
~
∩) is an idempotent, noncommutative semigroup (that is a band) under 

the condition T∩Z'∩M =∅, where (F,T), (G,Z) and (H,M) are soft sets. 

By Corollary 1,  (SE(U). λε)  is a noncommutative monoid (hence a semigroup) whose identity is ∅∅ under the 

condition T ∩ Z ∩ M = ∅, where (F. T), (G. Z), and (H.M) are soft sets over U. Moreover, by Theorem 9, 𝜆𝜀 

distributes over 
~
∩ from LHS under T ∩ Z ∩ M’ = T ∩ Z ∩ M = ∅, and by Theorem 9, λε distributes over 

~
∩  from 

RHS under the condition T′ ∩ Z ∩ M = ∅. Consequently, under the condition T∩Z∩M= 

T’∩Z∩M=T∩(Z∆M)=∅, (SE(U), 
~
∩,λε)  is an additive idempotent noncommutative semiring without zero but 

with unity under certain conditions. 

Conclusion 

Parametric techniques like soft sets and soft operations are extremely beneficial when dealing with uncertain 

things. Proposing new soft operations and deriving their algebraic features and implementations provide new 

insights into solving parametric data problems. In this sense, a novel kind of restricted and extended soft set 

operation is presented in this work. By putting forth "restricted and extended lambda operations of soft sets" 

and systematically examining the algebraic structures associated with these and other novel soft set operations, 

we want to add to the body of work on soft set theory. Specifically, these novel soft set operations' algebraic 

properties are analyzed in detail. Considering the algebraic properties of these soft set operations and 

distribution laws, an extensive analysis of the algebraic structures with these operations in the collection of 

soft sets over a universe is provided. We demonstrate that (SE(U),λε) is a noncommutative monoid with 

identity ∅∅ under certain conditions. Furthermore, we demonstrate that extended lambda operation and other 

types of soft sets and operations construct several significant algebraic structures, including semirings and 

nearsemirings, in the collection of soft sets over the universe. 

I. (SE(U),∩R,λε), (SE(U),∪R,λε), (SE(U),∪ε,λε), (SE(U),∩ε,λε), (SE(U), 
~
∩,λε),  (SE(U), 

~
∪,λε)  are all additive 

idempotent noncommutative semiring without zero but with unity under certain conditions. 

II. (SE(U),∩R,λε) is also additive commutative, idempotent, (right) nearsemirings with zero and unity but 

without a zero-symmetric property under certain conditions.  

By studying novel soft set operations and the algebraic structures of soft sets, we thoroughly comprehend 

their use. This has the potential to advance soft set theory as well as the traditional algebraic literature in 

addition to providing new instances of algebraic structures. Future research might look at further varieties of 

new restricted and extended soft set operations and the accompanying distributions and characteristics to add 

to the body of knowledge. 
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