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Abstract

In this article, a new distribution is proposed to innovate the Perks distribution by altering its functional
form without introducing additional parameter. The proposed distribution is named a new weighted T-X
Perks (WT-XP) distribution. For this distribution, expressions for some mathematical properties are
derived. The maximum likelihood estimates of the parameters α and β are derived and implemented
for complete samples that follow the WT-XP distribution. To illustrate the importance of the proposed
distribution over the other well-known distributions, two applications to real data sets are analyzed and
the WT-XP distribution appear more attractive based on the Kolmogorov Smirnov statistic p-values and
the model performance indicators used.
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1|Introduction
Probability distribution modelling of lifetime events has witnessed tremendous investigations in the last two
decades. New distributions have been proposed within this time frame to fit data complexities better and
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improve the flexibility of applying probability distributions in today’s world. Notable among events that have
necessitated robust research in the probability field is the sudden advent of the Coronavirus 2019 (COVID-19 for
short) and other numerous system failures in engineering and life sciences, which have spurred more work in
reliability analysis.

Essentially, formulation of distributions is easier when there are generators such as the novel approach named
the "Transformed-Transformer" otherwise called the T − X generator credit to [57] or family of distributions.
The T − X generator has dominated the statistical literature since its deployment. This is due to the scarcity of
robust methods that fit complex situations and enjoy parsimony. By parsimony, we mean that the T − X family
of distributions provides innovation for generating families of distributions without additional parameters. In
other words, in most cases, the total number of parameters is the sum of the parameters of the "Transformer"
distribution and the baseline (transformed) distribution. Again, the range of values of the random variable for
the common generators before the T − X family was proposed, namely the Beta-generated family by [?] and
KW-G family by [1] are between 0 and 1, that is x ∈ (0, 1). This is a huge setback as numerous data encountered
in research have their domains as the real line and hence are not bounded in a small interval such as (0, 1).

Due to the shortfalls of the existing generators that the T − X family tried to overcome, it has gained wider
applications. The following families of distributions have been proposed using the T − X family of distribution
generators. A new Flexible Logarithmic-X (NFLog-X) Family was proposed by [2]. Truncated family of
distributions by [3]. [4] proposed the transmuted alpha power-G (TAP-G) family of distributions. [5] introduced
the shifted exponential-G (SExpo-G) family of distributions. [6] proposed a new lifetime exponential-X family of
distributions. [7] proposed the generalized alpha exponent power (GAEP) family of distributions. [8] proposed a
new Generalization of the Gull Alpha Power (GGAP) family of distributions. [9] proposed a new generalized
family of distributions based on combining Marshal-Olkin transformation with the T − X family. The Frechet
Topp Leone-G (FTL-G) family of distributions by [10]. [11] proposed a new modified exponent power alpha
(NMEPA) family of distributions. [12] proposed the arcsine-X (Arcsine-X) family of distributions. [13] proposed
the type-I heavy-tailed family of distributions. [14] proposed a new extended family of distributions. [15]
developed the Gompertz-G family of distributions. For more flexible distributions with applications to lifetime
data, see [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

Ideally, any innovation aims to reduce complexities and solve problems. In the language of inference, it is
called tractability and parsimony. On this basis, a few novel families of distributions are important to discuss.
Exponentiated-G distributions, an interesting and apt form of extending a baseline distribution, were proposed
by [41] with CDF given by

F (x; α, ξ) = G(x; α, ξ)α; α, ξ > 0, x ∈ ℜ (1)
Marshall-Olkin-G family of distributions due to [42] is another great innovation in distribution theory. More
improvement based on equation 1 are exponentiated generalized class of distributions by [43], exponentiated
TX family of distributions by [44], Marshall-Olkin Chris-Jerry distribution by [45] and many others. Just as
the Exponentiated distribution in equation 1, in the Marshall-Olkin-G family, only a parameter is added to a
baseline distribution to innovate it. The cdf is given as

F (x; α, ξ) = G(x; ξ)
1 − ᾱḠ(x; ξ)

; α, ξ > 0, x ∈ ℜ. (2)

where ᾱ = 1 − α; G(x, ξ) is the CDF of the baseline distribution and Ḡ(x, ξ) = 1 − G(x, ξ). Some improvement
due to the Marshall-Olkin-G family includes the beta Marshall-Olkin family of distributions by [46], The Marshall–
Olkin alpha power family of distributions by [47], The Marshall-Olkin generalized-G family of distributions by
[48], Topp-Leone-Marshall-Olkin-G family of distributions by [49] and many more. [50] proposed one of the
nicest families of distributions in the last few years, with CDF given by

F (x; α, ξ) = eαG(x;ξ)2 − 1
eα − 1 ; α, ξ > 0, x ∈ ℜ. (3)

where α is the additional parameter and G(x, ξ) is the cdf of the baseline distribution. Equation 3 is named
the Zubair-G family of distributions. The tractability of this family of distributions has necessitated more
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modifications such as Marshall-Olkin Zubair-G family of distributions by [51], Zubair Lomax distribution by
[52], Zubair Gompertz distribution by [53], and Zubair-Exponential distribution by [54].

The Weighted T-X family introduced by [55] has cumulative distribution function (CDF) and probability density
function (PDF) given as

G(x) = 1 −
(

1 − F (x; Ξ)
eF (x;Ξ)

)
, (4)

and

g(x) = f(x; Ξ)
eF (x;Ξ) {2 − F (x; Ξ)} , (5)

respectively with Ξ being the vector of parameters of any baseline distribution having its CDF and PDF are
F (x; Ξ) and f(x; Ξ). The interesting feature of this family of distributions is that it does not introduce additional
parameter(s) to the baseline distribution, rather alters the functional form of the baseline. The Perks distribution
by [56] has CDF and PDF given as

F (x; α, β) = 1 −
(

1 + α

1 + αeβx

)
; x > 0, α, β > 0 (6)

and

f(x; α, β) = (1 + α)αβeβx

(1 + αeβx)2 (7)

Inserting equation 6 and 7 into 4 and 5, the Weighted T-X Perks (WT-XP) distribution is obtained with CDF
and PDF given as

G(x; α, β) = 1 − 1 + α

(1 + αeβx) e
1− 1+α

1+αeβx

; x > 0, α, β > 0, (8)

and

g(x; α, β) =
α (α + 1) β

(
α

(
eβx + 1

)
+ 2

)
e

α+1
αeβx+1

+βx−1

(αeβx + 1)3 , (9)

respectively.

The hazard function is

h(x; α, β) =
(1 + α)αβeβx

[
2 + α + αeβx

]
(1 + αeβx) (1 + α)e

1+α

1+αeβx

. (10)

The graphs of the PDF in figure 1 exhibit varying shapes making the distribution attractive for modeling lifetime
data that exhibit similar characteristics. The hazard functions in figures 3 and 4 are uniquely left-skewed,
obviously showing scenario of increasing failure rate. This situation abound in real-life. Example include the
mortality rate of patients diagnosed of certain diseases/epidemics from the outbreak to a certain peak.

1.1|Linear Representation of the PDF of WT-XP (α, β) Distribution
To make equation 9 tractable, we deploy the binomial expansion technique which leads to

g(x; α, β) = (α + 1)αβΦi,j,k,l,m,n

{
αxj−k−ne(i+l+m)βx + (α + 2)xj−k−ne(i+m)βx

}
, (11)
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Figure 1. PDF of WT-XP (α, β)
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Figure 2. CDF of WT-XP (α, β)
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Figure 3. HRF of WT-XP (α, β)
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Figure 4. HRF of WT-XP (α, β)

where

Φi,j,k,l,m,n =
∞∑

i=0

∞∑
j=0

j∑
k=0

∞∑
l=0

∞∑
m=0

j−k∑
n=0

(−1)i+m+j−k

j!

(
2 + i

i

)(
j

k

)(
k

l

)(
k + m − 1

m

)(
j − k

n

)
αi+l+mβj−k−n.

The remaining sections of this article are in the following arrangement; section discusses some properties of the
distribution that are analytically tractable which includes the crude moment, the moment generating function
and the quantile function. In section , we estimate the parameters of the distribution by means of the maximum
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likelihood estimation. Section presents the behaviour of the model through simulation study. In section we
consider two real life applications and concluded the article in section .

2|Mathematical Characteristics of the WT-XP (α, β) Distribu-
tion
In this section, we study the basic properties of the distribution. For clarity, the characteristics studied are
the tractable ones namely, the moment and related indices, the moment generating functions and the quantile
function.

2.1|The rth Crude Moment
Given X ∼ WT-XP (α, β), the rth non-central moment is given by

µ′
r = (α + 1)αβΦi,j,k,l,m,nΓ(j − k − n + r + 1)

{
α

(
− 1

(i + l + m)β

)j−k−n+r+1
+ (α + 2)

(
− 1

(i + m)β

)j−k−n+r+1
}

for r = 1, 2, · · ·
(12)

where

Φi,j,k,l,m,n =
∞∑

i=0

∞∑
j=0

j∑
k=0

∞∑
l=0

∞∑
m=0

j−k∑
n=0

(−1)i+m+j−k

j!

(
2 + i

i

)(
j

k

)(
k

l

)(
k + m − 1

m

)(
j − k

n

)
αi+l+mβj−k−n.

Proof : From definition, the rth crude or non-central moment is given by E(Xr) = µ′
r =

∞∫
0

xrg(x; α, β) dx.

µ′
r = (α + 1)αβΦi,j,k,l,m,n

{
α

∫ ∞

0
xj−k−n+re(i+l+m)βx dx + (α + 2)

∫ ∞

0
xj−k−n+re(i+m)βx dx

}
(13)

Define −z = (i + l + m)βx and −f = (i + m)βx, then

µ′
r = (α+1)αβΦi,j,k,l,m,nΓ(j − k − n + r + 1)

{
α

(
− 1

(i + l + m)β

)j−k−n+r+1
+ (α + 2)

(
− 1

(i + m)β

)j−k−n+r+1
}

.

(14)
□

The mean of WT-XP (α, β) is attained when r = 1 in equation 14.

µ = (α + 1)αβΦi,j,k,l,m,nΓ(j − k − n + 2)
{

α

(
− 1

(i + l + m)β

)j−k−n+2
+ (α + 2)

(
− 1

(i + m)β

)j−k−n+2
}

.

(15)
Similarly, the second, third and fourth crude moments are attained when r = 2, 3 and 4 in equation 14.

µ′
2 = (α + 1)αβΦi,j,k,l,m,nΓ(j − k − n + 3)

{
α

(
− 1

(i + l + m)β

)j−k−n+3
+ (α + 2)

(
− 1

(i + m)β

)j−k−n+3
}

,

(16)
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µ′
3 = (α + 1)αβΦi,j,k,l,m,nΓ(j − k − n + 4)

{
α

(
− 1

(i + l + m)β

)j−k−n+4
+ (α + 2)

(
− 1

(i + m)β

)j−k−n+4
}

,

(17)
and

µ′
4 = (α + 1)αβΦi,j,k,l,m,nΓ(j − k − n + 5)

{
α

(
− 1

(i + l + m)β

)j−k−n+5
+ (α + 2)

(
− 1

(i + m)β

)j−k−n+5
}

.

(18)

2.2|Moment Generating Function
Moments generally referred to as the mean value of the powers of a random variable say X, where they exists and
are finite can be obtained using a generating function called the moment generating function M − X(t) = E(etx)
defined for all positive t ∈ ℜ. So,

MX(t) = (α + 1)αβΦi,j,k,l,m,n

{
α

∫ ∞

0
xj−k−ne[(i+l+m)β+t]x dx + (α + 2)

∫ ∞

0
xj−k−ne[(i+m)β+t]x dx

}
= (α + 1)αβΦi,j,k,l,m,nΓ(j − k − n + 1)

{
α

(
− 1

(i + l + m)β + t

)j−k−n+1
+ (α + 2)

(
− 1

(i + m)β + t

)j−k−n+1
}

(19)
where

Φi,j,k,l,m,n =
∞∑

i=0

∞∑
j=0

j∑
k=0

∞∑
l=0

∞∑
m=0

j−k∑
n=0

(−1)i+m+j−k

j!

(
2 + i

i

)(
j

k

)(
k

l

)(
k + m − 1

m

)(
j − k

n

)
αi+l+mβj−k−n.

2.3|Quantile Function
The quantile when it is analytically plausible provides basis for data generation. This aids in the simulation
of random sample for the determination of model behaviour. Here, the CDF in equation 8 is inverted by first
writing G(x; α, β) = q, so that

1 − q = 1 + α

(1 + αeβx) e
1− 1+α

1+αeβx

=⇒
(
1 + αeβx

)
e(1+αeβx)−1

= (1 + α) e(2+α)

1 − q

(20)

Let
(
1 + αeβx

)−1 = Z(x); so that −Z(x)e−Z(x) = − (1−q)e−(2+α)

1+α . Taking Lambert W function ([58, 59]), we
obtain

−Z(x) = W

[
− (1 − q)e−(2+α)

1 + α

]
− 1

1 + αeβx
= W

[
− (1 − q)e−(2+α)

1 + α

] (21)

Hence, the quantile function is

xq = 1
β

ln

 1
α

−1 − 1
W

[
− (1−q)e−(2+α)

1+α

]


. (22)
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The median lifetime of X is attained when q = 1
2 in equation 22.

x 1
2

= 1
β

ln

 1
α

−1 − 1
W

[
− e−(2+α)

2(1+α)

]


. (23)
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Figures 5, 6, 7 and 8 are the plots of the mean, variance, skewness and kurtosis.
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3|Point Estimation of Parameters
The estimation of parameters is one the important aspects of modeling. In this section, the maximum likelihood
is used to find the estimates of α and β. Suppose X(1), X(2), · · · , X(k) are ordered independent samples of sizes
n each following the proposed WT-XP (α, β) with a joint PDF g(x(i); α, β), the likelihood function L(X

∣∣α, β) is
written as;

L(X
∣∣α, β) = (1 + α)n

αnβne
β

n∑
i=1

xi

e
−n+

n∑
i=1

(
1+α

1+αeβxi

)
n∏

i=1

(
1 + αeβx

)−2
[

2 + α
(
1 + eβx

)
1 + αeβx

]
(24)

Take the log of L(.) and assign it to ℓ

ℓ = n log (1 + α) + n log α + n log β + β

n∑
i=1

xi − n +
n∑

i=1

(
1 + α

1 + αeβx

)

− 2
n∑

i=1
log

(
1 + αeβx

)
+

n∑
i=1

log
[
2 + α

(
1 + eβx

)]
−

n∑
i=1

log
(
1 + αeβx

) (25)

The first-order derivatives of ℓ with respect to α and β are respectively;

∂ℓ

∂α
= n

1 + α
+ n

α
− 3

n∑
i=1

1
α + e−βx

+
n∑

i=1

1
α + 2 (1 + eβx)−1 (26)

and

∂ℓ

∂β
= n

β
+

n∑
i=1

xi − α(1 + α)
n∑

i=1

xeβx

(1 + αeβx)2 − 2α

n∑
i=1

x

α + e−βx
+ α

n∑
i=1

[
x

α + (2 + α)e−βx
− x

α + e−βx

]
(27)

The non-linear system of equations 26 and 27 do not possess analytical solution. Numerical iteration using
Newton-Raphson’s algorithm is used to facilitate the convergence of α̂ and β̂. In R, a special function called
optim() function ([60]) is employed for this optimization.

4|Behaviour of the WT-XP (α, β) Model via Simulation
In this section, simulation study is conducted to ascertain the behaviour of WT-XP (α, β) distribution parameters
as sample size n increases. Sample sizes n = 25, 50, 75, · · · , 1000 with 1000 replications in each case were chosen
and the average estimates of the parameters, bias, absolute bias, and the mean squared error are obtained.
Initial parameter values of (α = 1, β = 1) and (α = 0.25, β = 1.5) are the two scenarios for the simulation whose
graphical illustrations are presented in figures 9 and 10. From both figures, we see that α decays faster as the
sample size becomes large. Both parameters tends to zero as the sample size increases. The bias is positive and
also reduces as the sample size becomes large. This is a good asymptotic result and shows that distribution
can be beneficial in modeling lifetime events. The computational formulae for the bias, absolute bias and mean
square error are respectively;

Bias(Ξ) = 1
N

N∑
i=1

(Ξ̂i − Ξ),

ABias(Ξ) = 1
N

N∑
i=1

| Ξ̂i − Ξ |,

MSE(Ξ) = 1
N

N∑
i=1

(Ξ̂i − Ξ)2,

(28)
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Figure 9. Simulation Results for WT-XP (α = 1, β = 1)

where Ξ is the vector of parameters of the suggested WT-XP distribution. Hence we write Ξ = (α, β) which is
estimated by Ξ̂.

5|Applications
This section demonstrates the utility of the proposed WT-XP distribution based on two real data sets. Data-I
consists of volume of Bitcoin in USD (BTC-USD) traded weekly from July 17, 2023 to July 19, 2024, as mentioned
in table 1. The data can be found https://finance.yahoo.com/quote/BTC-USD/history/ (accessed on 19 July
2024). The second data represent the infant mortality rate of China from 1969 to 2021. The data are contained
in table 2 and obtained from https://data.worldbank.org/indicator/SP.DYN.IMRT.IN (accessed on 20 July
2024).

The competing models chosen are

(1) The Perks distribution with CDF

F (x; α, β) = 1 −
(

1 + α

1 + αeβx

)
; x > 0, α, β > 0 and PDF f(x; α, β) = (1 + α)αβeβx

(1 + αeβx)2 .

https://finance.yahoo.com/quote/BTC-USD/history/
https://data.worldbank.org/indicator/SP.DYN.IMRT.IN
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Figure 10. Simulation Results for WT-XP (α = 0.25, β = 1.5)

(2) The Weibull distribution with PDF is given by:
f(x; α, β) = βαxα−1e−βxα

and CDF F (x; α, β) = 1 − e−βxα

.

(3) Gamma distribution with PDF

f(x; α, β) = xα−1e−βxβα

Γ(α) for x > 0 and α, β > 0, and CDF F (x; α, β) = γ(α, βx)
Γ(α) .

(4) Gumbel distribution with CDF

F (x; µ, β) = e−e−(x−µ)/β

; µ > 0, β > 0 and PDF f(x; µ, β) = e−(x−µ)/β−e−(x−µ)/β

.

(5) The log-normal distribution with PDF

f(x) = 1
xσ

√
2π

exp
(

− (ln x − µ)2

2σ2

)
; µ > 0, σ > 0 and CDF F (x) = Φ

(
ln x − µ

σ

)
.

For model performance, the log-likelihood statistic (LL), the akaike information criterion (AIC), the corrected
akaike information criterion (CAIC), the bayesian information criterion (BIC), hannan quinn information
criterion (HQIC) are the metrics. The decision is such that the distribution the least values of these criteria is
considered best. For goodness of fit, the cramér von misses statistic (W), the anderson-darling statistic (A), the
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kolmogorov-smirnov statistic (KS) and its p-value are considered. With a p-value of 0.9254 which is higher than
those of the competing distributions, the suggested WT-XP distribution fits the BTC-USD data better than the
rest of the models. The same is applicable to the China infant mortality rate data which has a p-value of 0.8025.
Figures 11 and 12 are evidences of how well the WT-XP distribution fits the two data sets respectively.

Table 1. Bitcoin in USD (BTC-USD) volume traded weekly from July 17, 2023 to July 19,
2024 (Data-I)

5.48500454 7.63096295 8.782700105 8.515301445 11.6418275 8.308680745 11.31616278
6.981461115 8.579669986 8.225190521 7.301224073 8.21837757 7.267365449 11.34023831
16.5718773 11.55200566 13.47674948 14.35353611 13.0439894 13.4360108 18.85036149
16.8493482 15.20841715 15.78071262 20.2311774 25.99718197 13.91358248 15.53146029
13.51841874 15.78263954 21.35600415 16.07691456 32.28956661 40.57096933 40.59577506
32.80971217 21.63246258 22.94272601 28.82436754 25.78895559 17.60310882 21.77170118
16.16178571 19.1456349 22.5779718 17.09494099 18.75695007 17.59732716 16.34490154
17.10300939 21.31075314 18.740702 13.94762495 3.348603085

Table 2. Infant mortality rate of China from 1969 to 2021

118.8 112.8 107.1 101.4 95.9 90.3 84.8 79.5 74.5 70.1 66.1 62.7 59.9 57.7 56
54.8 54.1 53.8 53.8 53.9 53.9 53.6 53.1 52.1 50.8 49.2 47.4 45.5 43.5 41.4
39.1 36.7 34.1 31.5 28.9 26.3 24 22 20.1 18.5 17.1 15.8 14.6 13.5 12.5
11.6 10.7 9.9 9.2 8.6 8 7.4 6.9

Table 3. Model Comparison and Fitness Measures for USD (BTC-USD) Data

Dist LL AIC CAIC BIC HQIC W A K-S p-value α̂MLE β̂MLE
WT-XP -185.31 374.623 374.858 378.601 376.157 0.071 0.543 0.072 0.9254 0.0193 0.2047
Gamma -183.49 370.971 371.206 374.949 372.505 0.065 0.408 0.078 0.8690 4.5227 0.2719
Weibull -185.17 374.344 374.579 378.322 375.878 0.091 0.634 0.095 0.6818 18.8229 2.2164
Gumbel -183.49 370.987 371.223 374.965 372.521 0.062 0.384 0.087 0.7737 13.0591 6.1599
LNORM -184.19 372.385 372.621 376.363 373.920 0.105 0.562 0.106 0.5431 2.6967 0.4943

Table 4. Model Comparison and Fitness Measures for Infant Mortality Rate of China

Dist LL AIC CAIC BIC HQIC W A KS p-value α̂MLE β̂MLE
WT-XP -249.69 503.374 503.614 507.314 504.889 0.112 0.710 0.0883 0.8025 0.1076 0.0419
Perks -249.62 503.239 503.479 507.180 504.754 0.112 0.705 0.0893 0.7919 0.2204 0.0452

Gamma -249.25 502.509 502.749 506.449 504.024 0.162 0.894 0.1233 0.3959 2.0327 0.0444
Weibull -248.76 501.514 501.754 505.455 503.029 0.125 0.722 0.1021 0.6391 50.9903 1.5706
Gumbel -251.69 507.371 507.611 511.312 508.887 0.141 0.866 0.1092 0.5523 31.9212 23.6552
LNORM -251.69 507.384 507.624 511.324 508.899 0.277 1.500 0.1567 0.1480 3.5577 0.7962

6|Conclusion
This article modifies the functional form of the popular Perks distribution. The modification produced a better
distribution without introducing an additional parameter. The plots of the PDF, CDF and the hazard function
illustrate the flexibility of the model since its possesses varying interesting shapes. For the record, the new
distribution has some tractable properties which were derived in the article namely the crude moment, moment
generating function, and the quantile function. The model usefulness was demonstrated using the bitcoin weekly
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Figure 11. Plots of the USD (BTC-USD) Data

volume of trade and the China infant mortality rate data. Financial and health records are gray areas of human
engagements. The ability of this distribution to fit data from these two vital sectors of human life portrays
this distribution ad one that fills a huge gap in the literature. Similarly, the fact that it beats the classical
distributions namely the Weibull, Gamma, Gumbel and log-normal even the baseline Perks distribution is
sufficient to say that the distribution is very appealing.
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Figure 12. Plots of the Infant Mortality Rate of China
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